IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v6y2023i3d10.1038_s41893-022-01017-0.html
   My bibliography  Save this article

Navigating sustainability trade-offs in global beef production

Author

Listed:
  • Adam C. Castonguay

    (The University of Queensland
    The University of Queensland
    The University of Queensland)

  • Stephen Polasky

    (University of Minnesota
    University of Minnesota)

  • Matthew H. Holden

    (The University of Queensland
    The University of Queensland)

  • Mario Herrero

    (Cornell University)

  • Daniel Mason-D’Croz

    (Cornell University
    Wageningen University and Research)

  • Cecile Godde

    (Commonwealth Scientific and Industrial Research Organisation (CSIRO))

  • Jinfeng Chang

    (Zhejiang University)

  • James Gerber

    (University of Minnesota)

  • G. Bradd Witt

    (The University of Queensland)

  • Edward T. Game

    (Asia Pacific Resource Centre)

  • Brett A. Bryan

    (Deakin University)

  • Brendan Wintle

    (University of Melbourne)

  • Katie Lee

    (The University of Queensland
    The University of Queensland)

  • Payal Bal

    (University of Melbourne)

  • Eve McDonald-Madden

    (The University of Queensland
    The University of Queensland)

Abstract

Beef production represents a complex global sustainability challenge including reducing poverty and hunger and the need for climate action. Understanding the trade-offs between these goals at a global scale and at resolutions to inform land use is critical for a global transition towards sustainable beef. Here we optimize global beef production at fine spatial resolution and identify trade-offs between economic and environmental objectives interpretable to global sustainability ambitions. We reveal that shifting production areas, compositions of current feeds and informed land restoration enable large emissions reductions of 34–85% annually (612–1,506 MtCO2e yr−1) without increasing costs. Even further reductions are possible but come at a trade-off with costs of production. Critically our approach can help to identify such trade-offs among multiple sustainability goals, produces fine-resolution mapping to inform required land-use change and does so at the scale necessary to shift towards a globally sustainable industry for beef and to sectors beyond.

Suggested Citation

  • Adam C. Castonguay & Stephen Polasky & Matthew H. Holden & Mario Herrero & Daniel Mason-D’Croz & Cecile Godde & Jinfeng Chang & James Gerber & G. Bradd Witt & Edward T. Game & Brett A. Bryan & Brendan, 2023. "Navigating sustainability trade-offs in global beef production," Nature Sustainability, Nature, vol. 6(3), pages 284-294, March.
  • Handle: RePEc:nat:natsus:v:6:y:2023:i:3:d:10.1038_s41893-022-01017-0
    DOI: 10.1038/s41893-022-01017-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-022-01017-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-022-01017-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiaoxi & Biewald, Anne & Dietrich, Jan Philipp & Schmitz, Christoph & Lotze-Campen, Hermann & Humpenöder, Florian & Bodirsky, Benjamin Leon & Popp, Alexander, 2016. "Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns," Ecological Economics, Elsevier, vol. 122(C), pages 12-24.
    2. Matthew N. Hayek & Helen Harwatt & William J. Ripple & Nathaniel D. Mueller, 2021. "The carbon opportunity cost of animal-sourced food production on land," Nature Sustainability, Nature, vol. 4(1), pages 21-24, January.
    3. David Tilman & Michael Clark, 2014. "Global diets link environmental sustainability and human health," Nature, Nature, vol. 515(7528), pages 518-522, November.
    4. Zunyi Xie & Edward T. Game & Richard J. Hobbs & David J. Pannell & Stuart R. Phinn & Eve McDonald-Madden, 2020. "Conservation opportunities on uncontested lands," Nature Sustainability, Nature, vol. 3(1), pages 9-15, January.
    5. Breen, M. & Murphy, M.D. & Upton, J., 2019. "Development of a dairy multi-objective optimization (DAIRYMOO) method for economic and environmental optimization of dairy farms," Applied Energy, Elsevier, vol. 242(C), pages 1697-1711.
    6. Duncan, Marvin R. & Taylor, Richard D. & Saxowsky, David M. & Koo, Won W., 1997. "Economic Feasibility Of The Cattle Feeding Industry In The Northern Plains And Western Lakes States - Summary," Agricultural Economics Reports 23338, North Dakota State University, Department of Agribusiness and Applied Economics.
    7. David Griggs & Mark Stafford-Smith & Owen Gaffney & Johan Rockström & Marcus C. Öhman & Priya Shyamsundar & Will Steffen & Gisbert Glaser & Norichika Kanie & Ian Noble, 2013. "Sustainable development goals for people and planet," Nature, Nature, vol. 495(7441), pages 305-307, March.
    8. Jayant Sathaye, Willy Makundi, Larry Dale, Peter Chan, and Kenneth Andrasko, 2006. "GHG Mitigation Potential, Costs and Benefits in Global Forests: A Dynamic Partial Equilibrium Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 127-162.
    9. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    10. Duncan, Marvin R. & Taylor, Richard D. & Saxowsky, David M. & Koo, Won W., 1997. "Economic Feasibility Of The Cattle Feeding Industry In The Northern Plains And Western Lakes States," Agricultural Economics Reports 23199, North Dakota State University, Department of Agribusiness and Applied Economics.
    11. Jose Nuno-Ledesma & Nelson B. Villoria, 2019. "Estimating International Trade Margins Shares by Mode of Transport for the GTAP Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 28-49, June.
    12. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    13. Timothy D. Searchinger & Stefan Wirsenius & Tim Beringer & Patrice Dumas, 2018. "Assessing the efficiency of changes in land use for mitigating climate change," Nature, Nature, vol. 564(7735), pages 249-253, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Herrero & Benjamin Henderson & Petr Havlík & Philip K. Thornton & Richard T. Conant & Pete Smith & Stefan Wirsenius & Alexander N. Hristov & Pierre Gerber & Margaret Gill & Klaus Butterbach-Bahl, 2016. "Greenhouse gas mitigation potentials in the livestock sector," Nature Climate Change, Nature, vol. 6(5), pages 452-461, May.
    2. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Bellassen Valentin & Drut Marion & Diallo Abdoul & Antonioli Federico & Donati Michele & Brečić Ružica & Ferrer-Pérez Hugo & Gauvrit Lisa & Hoang Viet & Nguyen An & Knutsen Steinnes Kamilla & Vittersø, 2021. "The Carbon and Land Footprint of Certified Food Products," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 19(2), pages 113-126, December.
    4. Chantal Le Mouël & Anna Birgit Milford & Benjamin L. Bodirsky & Susanne Rolinski, 2019. "Drivers of meat consumption," Post-Print hal-02175593, HAL.
    5. Ignacio Cazcarro & Carlos A. López‐Morales & Faye Duchin, 2019. "The global economic costs of substituting dietary protein from fish with meat, grains and legumes, and dairy," Journal of Industrial Ecology, Yale University, vol. 23(5), pages 1159-1171, October.
    6. Christophe Gouel & Houssein Guimbard, 2019. "Nutrition Transition and the Structure of Global Food Demand," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(2), pages 383-403.
    7. Steven Greenland & Elizabeth Levin & John F. Dalrymple & Barry O’Mahony, 2018. "Sustainable innovation adoption barriers: water sustainability, food production and drip irrigation in Australia," Social Responsibility Journal, Emerald Group Publishing Limited, vol. 15(6), pages 727-741, November.
    8. Haugen, Ronald H. & Hughes, Harlan G., 1997. "Economic Evaluation Of Wet Corn Gluten Feed In Beef Feedlot Finishing," Agricultural Economics Miscellaneous Reports 23106, North Dakota State University, Department of Agribusiness and Applied Economics.
    9. Oliver Schöttker & Frank Wätzold, 2022. "Climate Change and the Cost-Effective Governance Mode for Biodiversity Conservation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(2), pages 409-436, June.
    10. Andreas Fazekas & Christopher Bataille & Adrien Vogt-Schilb, 2022. "Achieving net-zero prosperity: how governments can unlock 15 essential transformations," Post-Print halshs-03742125, HAL.
    11. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    12. Sands, Ronald D. & Meade, Birgit & Seale, James L., Jr. & Robinson, Sherman & Seeger, Riley, 2023. "Scenarios of Global Food Consumption: Implications for Agriculture," Economic Research Report 338943, United States Department of Agriculture, Economic Research Service.
    13. Kipling, Richard P. & Bannink, André & Bellocchi, Gianni & Dalgaard, Tommy & Fox, Naomi J. & Hutchings, Nicholas J. & Kjeldsen, Chris & Lacetera, Nicola & Sinabell, Franz & Topp, Cairistiona F.E. & va, 2016. "Modeling European ruminant production systems: Facing the challenges of climate change," Agricultural Systems, Elsevier, vol. 147(C), pages 24-37.
    14. Nicholas M. Short & M. Jennifer Woodward-Greene & Michael D. Buser & Daniel P. Roberts, 2023. "Scalable Knowledge Management to Meet Global 21st Century Challenges in Agriculture," Land, MDPI, vol. 12(3), pages 1-19, February.
    15. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    16. Stéphan Marette & Vincent Réquillart, 2020. "Dietary models and challenges for economics," Review of Agricultural, Food and Environmental Studies, Springer, vol. 101(1), pages 5-22, October.
    17. Richard Twine, 2021. "Emissions from Animal Agriculture—16.5% Is the New Minimum Figure," Sustainability, MDPI, vol. 13(11), pages 1-8, June.
    18. Martin C. Parlasca & Matin Qaim, 2022. "Meat Consumption and Sustainability," Annual Review of Resource Economics, Annual Reviews, vol. 14(1), pages 17-41, October.
    19. M. Kanerva, 2022. "Consumption Corridors and the Case of Meat," Journal of Consumer Policy, Springer, vol. 45(4), pages 619-653, December.
    20. Springmann, M., 2020. "Valuation of the health and climate-change benefits of healthy diets," ESA Working Papers 309361, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:6:y:2023:i:3:d:10.1038_s41893-022-01017-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.