Author
Listed:
- Matthew J. MacLachlan
(Cornell University
Cornell University)
- Michael K. Adjemian
(University of Georgia)
- Xiaoli Etienne
(University of Idaho)
- Megan Sweitzer
(U.S. Department of Agriculture - Economic Research Service)
- Richard Volpe III
(California Polytechnic State University)
- Wendy Zeng
(U.S. Department of Agriculture - Economic Research Service)
Abstract
The advent of COVID-19 ended an era of stable US retail food prices that followed the world food price crisis of 2010–2012. Pandemic-related disruptions, avian influenza outbreaks, and the Russia-Ukraine war drove 2022 food-at-home inflation to its highest rate since 1974 (11.4%). In 2023, U.S. Department of Agriculture (USDA) economists responded to these changes by updating food price forecasts using statistical learning protocols to select time series models and prediction intervals to convey their uncertainty. We characterise the public good provided by these “adaptive” inflation forecasts and enhance them by incorporating exogenous variables to improve their precision and explanatory power. COVID-19’s arrival highlighted the value of adapting to the growing relevance of the all-items-less-food-and-energy ("core”) index, the money supply, and wages in predicting food prices. The strong relationships between food prices and core prices and the money supply indicate the sensitivity of food markets to macroeconomic forces and government policy decisions.
Suggested Citation
Matthew J. MacLachlan & Michael K. Adjemian & Xiaoli Etienne & Megan Sweitzer & Richard Volpe III & Wendy Zeng, 2025.
"Adaptive food price forecasting improves public information in times of rapid economic change,"
Nature Communications, Nature, vol. 16(1), pages 1-14, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61660-x
DOI: 10.1038/s41467-025-61660-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61660-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.