IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61588-2.html
   My bibliography  Save this article

Reduction in Earth’s carbon budget imbalance

Author

Listed:
  • Sudhanshu Pandey

    (California Institute of Technology)

  • Frédéric Chevallier

    (Université Paris-Saclay)

  • Christian Rödenbeck

    (Max Planck Institute for Biogeochemistry)

  • Brendan Byrne

    (California Institute of Technology)

  • Abhishek Chatterjee

    (California Institute of Technology)

  • Junjie Liu

    (California Institute of Technology
    California Institute of Technology)

  • Christian Frankenberg

    (California Institute of Technology
    California Institute of Technology)

Abstract

The Global Carbon Project (GCP) compiles an updated global carbon budget each year, synthesizing state‑of‑the‑art estimates of anthropogenic CO2 emissions, land and ocean sinks, and the atmospheric CO2 growth rate. The residual between these terms, referred to as the global carbon budget imbalance, reflects the aggregate inaccuracies of the individual component estimates. Growth rates derived from marine boundary layer (MBL) surface flask mixing ratio observations are assumed to be highly accurate. Hence, land and ocean sink estimates from process models are viewed as the primary source of the imbalance. Here we show that substantial discrepancies arise when marine boundary layer growth rate estimates are used to represent the whole atmosphere. Correcting for this discrepancy using atmospheric flux inversion estimates reduces the 0.76 petagrams of carbon per year (PgC yr−1) root-mean-square (RMS) imbalance (from the 2023 GCP report) by up to 25%. Further investigation into the imbalance metric between the 2017 and 2023 GCP reports shows a reduction in imbalance resulting from updates to each carbon budget component, leading to a 16% overall reduction. These reductions provide quantitative evidence of improvements in process models and inventory emission estimates, driven by enhanced forcing data and the inclusion of new carbon cycle processes. Overall, we report a 37% reduction in the root-mean-square imbalance, from 0.91 to 0.57 PgC yr−1, between the 2017 and 2023 GCP reports by combining process model and inventory improvements with atmospheric growth rate corrections. Our findings indicate that land and ocean process models are more accurate than previously believed and that the scientific understanding of Earth’s carbon cycle is improving.

Suggested Citation

  • Sudhanshu Pandey & Frédéric Chevallier & Christian Rödenbeck & Brendan Byrne & Abhishek Chatterjee & Junjie Liu & Christian Frankenberg, 2025. "Reduction in Earth’s carbon budget imbalance," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61588-2
    DOI: 10.1038/s41467-025-61588-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61588-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61588-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vincent Humphrey & Jakob Zscheischler & Philippe Ciais & Lukas Gudmundsson & Stephen Sitch & Sonia I. Seneviratne, 2018. "Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage," Nature, Nature, vol. 560(7720), pages 628-631, August.
    2. Lina M. Mercado & Nicolas Bellouin & Stephen Sitch & Olivier Boucher & Chris Huntingford & Martin Wild & Peter M. Cox, 2009. "Impact of changes in diffuse radiation on the global land carbon sink," Nature, Nature, vol. 458(7241), pages 1014-1017, April.
    3. A. P. Ballantyne & C. B. Alden & J. B. Miller & P. P. Tans & J. W. C. White, 2012. "Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years," Nature, Nature, vol. 488(7409), pages 70-72, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Xiangzhong Luo & Trevor F. Keenan, 2022. "Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
    4. Matheus Henrique Nunes & José Luís Campana Camargo & Grégoire Vincent & Kim Calders & Rafael S. Oliveira & Alfredo Huete & Yhasmin Mendes de Moura & Bruce Nelson & Marielle N. Smith & Scott C. Stark &, 2022. "Forest fragmentation impacts the seasonality of Amazonian evergreen canopies," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Huang, Xiaoxun & Hayashi, Kiichiro & Fujii, Minoru & Villa, Ferdinando & Yamazaki, Yuri & Okazawa, Hiromu, 2023. "Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China," Renewable Energy, Elsevier, vol. 205(C), pages 293-304.
    6. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Wen Zhang & William K. Smith & Trevor F. Keenan & Matthew P. Dannenberg & Yang Li & Songhan Wang & John S. Kimball & David J. P. Moore, 2025. "Seasonal stabilization effects slowed the greening of the Northern Hemisphere over the last two decades," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    9. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Chunbo Chen & Chi Zhang, 2017. "Projecting the CO 2 and Climatic Change Effects on the Net Primary Productivity of the Urban Ecosystems in Phoenix, AZ in the 21st Century under Multiple RCP (Representative Concentration Pathway) Sce," Sustainability, MDPI, vol. 9(8), pages 1-20, August.
    11. Rebecca Peters & Jürgen Berlekamp & Ana Lucía & Vittoria Stefani & Klement Tockner & Christiane Zarfl, 2021. "Integrated Impact Assessment for Sustainable Hydropower Planning in the Vjosa Catchment (Greece, Albania)," Sustainability, MDPI, vol. 13(3), pages 1-18, February.
    12. Li, Peidu & Luo, Yong & Xia, Xin & Gao, Xiaoqing & Chang, Rui & Li, Zhenchao & Zheng, Junqing & Shi, Wen & Liao, Zhouyi, 2024. "Factors and quantitative impact on electrical yield in fishery complementary photovoltaic power plant under different cloud cover conditions," Energy, Elsevier, vol. 309(C).
    13. Hou, Dawei & Meng, Fanhao & Ji, Chao & Xie, Li & Zhu, Wenjuan & Wang, Shizhong & Sun, Hua, 2022. "Linking food production and environmental outcomes: An application of a modified relative risk model to prioritize land-management practices," Agricultural Systems, Elsevier, vol. 196(C).
    14. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    15. Nan Ma & Shanshan Cao & Tao Bai & Zhihao Yang & Zhaozhao Cai & Wei Sun, 2025. "Assessment of Vegetation Dynamics in Xinjiang Using NDVI Data and Machine Learning Models from 2000 to 2023," Sustainability, MDPI, vol. 17(1), pages 1-24, January.
    16. Srinet, Ritika & Nandy, Subrata & Patel, N.R. & Padalia, Hitendra & Watham, Taibanganba & Singh, Sanjeev K. & Chauhan, Prakash, 2023. "Simulation of forest carbon fluxes by integrating remote sensing data into biome-BGC model," Ecological Modelling, Elsevier, vol. 475(C).
    17. He, Bohao & Jia, Biying & Zhao, Yanghe & Wang, Xu & Wei, Mao & Dietzel, Ranae, 2022. "Estimate soil moisture of maize by combining support vector machine and chaotic whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 267(C).
    18. Pires, José C.M., 2017. "COP21: The algae opportunity?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 867-877.
    19. Kalyan Annamalai, 2024. "Breathing Planet Earth: Analysis of Keeling’s Data on CO 2 and O 2 with Respiratory Quotient (RQ), Part I: Global Respiratory Quotient (RQ Glob ) of Earth," Energies, MDPI, vol. 17(2), pages 1-35, January.
    20. Mikkel Bennedsen & Eric Hillebrand & Siem Jan Koopman, 2024. "A regression-based approach to the CO2 airborne fraction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61588-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.