IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v196y2022ics0308521x2100295x.html
   My bibliography  Save this article

Linking food production and environmental outcomes: An application of a modified relative risk model to prioritize land-management practices

Author

Listed:
  • Hou, Dawei
  • Meng, Fanhao
  • Ji, Chao
  • Xie, Li
  • Zhu, Wenjuan
  • Wang, Shizhong
  • Sun, Hua

Abstract

Sustainable land-use systems require clear decision-making protocols across institutions and departments. However, food production and ecological conservation are often regarded as separate or even incompatible policy goals, resulting in sustainability challenges and unclear land-management practices. More recently, with the introduction of Sustainable Development Goals (SDGs), there has been growing interests in minimizing the possible trade-offs between the two policy goals through appropriate governance.

Suggested Citation

  • Hou, Dawei & Meng, Fanhao & Ji, Chao & Xie, Li & Zhu, Wenjuan & Wang, Shizhong & Sun, Hua, 2022. "Linking food production and environmental outcomes: An application of a modified relative risk model to prioritize land-management practices," Agricultural Systems, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:agisys:v:196:y:2022:i:c:s0308521x2100295x
    DOI: 10.1016/j.agsy.2021.103342
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X2100295X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2021.103342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. E. Campbell & J. A. Berry & U. Seibt & S. J. Smith & S. A. Montzka & T. Launois & S. Belviso & L. Bopp & M. Laine, 2017. "Large historical growth in global terrestrial gross primary production," Nature, Nature, vol. 544(7648), pages 84-87, April.
    2. Jiren, Tolera Senbeto & Bergsten, Arvid & Dorresteijn, Ine & Collier, Neil French & Leventon, Julia & Fischer, Joern, 2018. "Integrating food security and biodiversity governance: A multi-level social network analysis in Ethiopia," Land Use Policy, Elsevier, vol. 78(C), pages 420-429.
    3. Patrick Meyfroidt & Florian Schierhorn & Alexander Vladimirovich Prishchepov & Daniel Muller & Tobias Kuemmerle, 2016. "Drivers, Constraints and Trade-Offs Associated with Recultivating Abandoned Cropland in Russia, Ukraine and Kazakhstan," Spatial Economics=Prostranstvennaya Ekonomika, Economic Research Institute, Far Eastern Branch, Russian Academy of Sciences (Khabarovsk, Russia), issue 2, pages 55-103.
    4. Tasser, Erich & Schirpke, Uta & Zoderer, Brenda Maria & Tappeiner, Ulrike, 2020. "Towards an integrative assessment of land-use type values from the perspective of ecosystem services," Ecosystem Services, Elsevier, vol. 42(C).
    5. Andrea Koch & Alex McBratney & Mark Adams & Damien Field & Robert Hill & John Crawford & Budiman Minasny & Rattan Lal & Lynette Abbott & Anthony O'Donnell & Denis Angers & Jeffrey Baldock & Edward Bar, 2013. "Soil Security: Solving the Global Soil Crisis," Global Policy, London School of Economics and Political Science, vol. 4(4), pages 434-441, November.
    6. Vincent Humphrey & Jakob Zscheischler & Philippe Ciais & Lukas Gudmundsson & Stephen Sitch & Sonia I. Seneviratne, 2018. "Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage," Nature, Nature, vol. 560(7720), pages 628-631, August.
    7. van den Heuvel, Lotte & Blicharska, Malgorzata & Masia, Sara & Sušnik, Janez & Teutschbein, Claudia, 2020. "Ecosystem services in the Swedish water-energy-food-land-climate nexus: Anthropogenic pressures and physical interactions," Ecosystem Services, Elsevier, vol. 44(C).
    8. Shackleton, C.M. & Mograbi, P.J. & Drimie, S. & Fay, D. & Hebinck, P. & Hoffman, M.T. & Maciejewski, K. & Twine, W., 2019. "Deactivation of field cultivation in communal areas of South Africa: Patterns, drivers and socio-economic and ecological consequences," Land Use Policy, Elsevier, vol. 82(C), pages 686-699.
    9. Alexander J. Winkler & Ranga B. Myneni & Georgii A. Alexandrov & Victor Brovkin, 2019. "Earth system models underestimate carbon fixation by plants in the high latitudes," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    10. David S. Powlson & Clare M. Stirling & M. L. Jat & Bruno G. Gerard & Cheryl A. Palm & Pedro A. Sanchez & Kenneth G. Cassman, 2014. "Limited potential of no-till agriculture for climate change mitigation," Nature Climate Change, Nature, vol. 4(8), pages 678-683, August.
    11. Karl-Heinz Erb & Thomas Kastner & Christoph Plutzar & Anna Liza S. Bais & Nuno Carvalhais & Tamara Fetzel & Simone Gingrich & Helmut Haberl & Christian Lauk & Maria Niedertscheider & Julia Pongratz & , 2018. "Unexpectedly large impact of forest management and grazing on global vegetation biomass," Nature, Nature, vol. 553(7686), pages 73-76, January.
    12. Wang, Jieyong & Zhang, Ziwen & Liu, Yansui, 2018. "Spatial shifts in grain production increases in China and implications for food security," Land Use Policy, Elsevier, vol. 74(C), pages 204-213.
    13. Antle, John M. & Capalbo, Susan Marie, 2002. "Agriculture As A Managed Ecosystem: Policy Implications," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 27(1), pages 1-15, July.
    14. Luiz E. O. C. Aragão & Liana O. Anderson & Marisa G. Fonseca & Thais M. Rosan & Laura B. Vedovato & Fabien H. Wagner & Camila V. J. Silva & Celso H. L. Silva Junior & Egidio Arai & Ana P. Aguiar & Jos, 2018. "21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongwei Guo & Ji Han & Lili Qian & Xinxin Long & Xiaoyin Sun, 2022. "Assessing the Potential Impacts of Urban Expansion on Hydrological Ecosystem Services in a Rapidly Urbanizing Lake Basin in China," Sustainability, MDPI, vol. 14(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yizhao & Fei, Xinran & Groisman, Pavel & Sun, Zhengguo & Zhang, Jianan & Qin, Zhihao, 2019. "Contrasting policy shifts influence the pattern of vegetation production and C sequestration over pasture systems: A regional-scale comparison in Temperate Eurasian Steppe," Agricultural Systems, Elsevier, vol. 176(C).
    2. Richter, Franziska & Jan, Pierrick & El Benni, Nadja & Lüscher, Andreas & Buchmann, Nina & Klaus, Valentin H., 2021. "A guide to assess and value ecosystem services of grasslands," Ecosystem Services, Elsevier, vol. 52(C).
    3. Shixiong Song & Siyuan Zhao & Ye Zhang & Yongxi Ma, 2023. "Carbon Emissions from Agricultural Inputs in China over the Past Three Decades," Agriculture, MDPI, vol. 13(5), pages 1-12, April.
    4. Mugido, Worship & Shackleton, Charlie M., 2019. "The contribution of NTFPS to rural livelihoods in different agro-ecological zones of South Africa," Forest Policy and Economics, Elsevier, vol. 109(C).
    5. Carmenta, Rachel & Cammelli, Federico & Dressler, Wolfram & Verbicaro, Camila & Zaehringer, Julie G., 2021. "Between a rock and a hard place: The burdens of uncontrolled fire for smallholders across the tropics," World Development, Elsevier, vol. 145(C).
    6. Qenani-Petrela, Eivis & Noel, Jay E. & Mastin, Thomas, 2007. "A Benefit Transfer Approach to the Estimation of Agro-Ecosystems Services Benefits: A Case Study of Kern County, California," Research Project Reports 121605, California Polytechnic State University, San Luis Obispo, California Institute for the Study of Specialty Crops.
    7. Carlos F. A. Silva & Swanni T. Alvarado & Alex M. Santos & Maurício O. Andrade & Silas N. Melo, 2022. "Highway Network and Fire Occurrence in Amazonian Indigenous Lands," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    8. Cao, Jianjun & Wei, Chen & Adamowski, Jan F. & Zhou, Junju & Liu, Chunfang & Zhu, Guofeng & Dong, Xiaogang & Zhang, Xiaofang & Zhao, Huijun & Feng, Qi, 2020. "Could arid and semi-arid abandoned lands prove ecologically or economically valuable if they afford greater soil organic carbon storage than afforested lands in China’s Loess Plateau?," Land Use Policy, Elsevier, vol. 99(C).
    9. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    10. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    11. OKORIE, Benedict Odinaka & NIRAJ, Yadav, 2022. "Effects Of Different Tillage Practices On Soil Fertility Properties: A Review," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 8(1), February.
    12. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    13. Ostapchuk, Igor & Gagalyuk, Taras & Curtiss, Jarmila, 2021. "Post-acquisition integration and growth of farms: the case of Ukrainian agroholdings," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 24(4), April.
    14. Andrei Kirilenko & Nikolai Dronin, 2022. "Recent grain production boom in Russia in historical context," Climatic Change, Springer, vol. 171(3), pages 1-19, April.
    15. Yu, Zhenning & She, Shuoqi & Xia, Chuyu & Luo, Jiaojiao, 2023. "How to solve the dilemma of China’s land fallow policy: Application of voluntary bidding mode in the Yangtze River Delta of China," Land Use Policy, Elsevier, vol. 125(C).
    16. Ananda Santa Rosa de Andrade & Rossano Marchetti Ramos & Edson Eyji Sano & Renata Libonati & Filippe Lemos Maia Santos & Julia Abrantes Rodrigues & Marcos Giongo & Rafael Rodrigues da Franca & Ruth El, 2021. "Implementation of Fire Policies in Brazil: An Assessment of Fire Dynamics in Brazilian Savanna," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    17. Veltman, Karin & Rotz, C. Alan & Chase, Larry & Cooper, Joyce & Ingraham, Pete & Izaurralde, R. César & Jones, Curtis D. & Gaillard, Richard & Larson, Rebecca A. & Ruark, Matt & Salas, William & Thoma, 2018. "A quantitative assessment of Beneficial Management Practices to reduce carbon and reactive nitrogen footprints and phosphorus losses on dairy farms in the US Great Lakes region," Agricultural Systems, Elsevier, vol. 166(C), pages 10-25.
    18. David Oscar Yawson & Michael Osei Adu & Benjamin Ason & Frederick Ato Armah & Genesis Tambang Yengoh, 2016. "Putting Soil Security on the Policy Agenda: Need for a Familiar Framework," Challenges, MDPI, vol. 7(2), pages 1-11, September.
    19. Samaneh Sadat Nickayin & Francesca Perrone & Barbara Ermini & Giovanni Quaranta & Rosanna Salvia & Filippo Gambella & Gianluca Egidi, 2021. "Soil Quality and Peri-Urban Expansion of Cities: A Mediterranean Experience (Athens, Greece)," Sustainability, MDPI, vol. 13(4), pages 1-12, February.
    20. Afshin Ghahramani & John McLean Bennett & Aram Ali & Kathryn Reardon-Smith & Glenn Dale & Stirling D. Roberton & Steven Raine, 2021. "A Risk-Based Approach to Mine-Site Rehabilitation: Use of Bayesian Belief Network Modelling to Manage Dispersive Soil and Spoil," Sustainability, MDPI, vol. 13(20), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:196:y:2022:i:c:s0308521x2100295x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.