IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v458y2009i7241d10.1038_nature07949.html
   My bibliography  Save this article

Impact of changes in diffuse radiation on the global land carbon sink

Author

Listed:
  • Lina M. Mercado

    (Centre for Ecology and Hydrology)

  • Nicolas Bellouin

    (Met Office Hadley Centre)

  • Stephen Sitch

    (Met Office Hadley Centre)

  • Olivier Boucher

    (Met Office Hadley Centre)

  • Chris Huntingford

    (Centre for Ecology and Hydrology)

  • Martin Wild

    (ETH Zurich, Institute for Atmospheric and Climate Science)

  • Peter M. Cox

    (School of Engineering, Computer Science and Mathematics, University of Exeter)

Abstract

A dim view of global warming Increased exposure to solar radiation generally increases plant photosynthesis, but not all forms of radiation are equally effective. In particular, field studies have demonstrated that a given amount of diffuse radiation leads to more fixed carbon than direct radiation. Mercado et al. use the HadGEM2-A general circulation model to simulate the effect of late twentieth century 'global dimming' and associated increases in the diffuse radiation fraction on global carbon storage. They find that increases in diffuse radiation enhanced the terrestrial carbon sink by about 25%. Paradoxically, reducing anthropogenic pollution in the future would reduce this diffuse radiation effect, thereby creating a positive feedback to global warming.

Suggested Citation

  • Lina M. Mercado & Nicolas Bellouin & Stephen Sitch & Olivier Boucher & Chris Huntingford & Martin Wild & Peter M. Cox, 2009. "Impact of changes in diffuse radiation on the global land carbon sink," Nature, Nature, vol. 458(7241), pages 1014-1017, April.
  • Handle: RePEc:nat:nature:v:458:y:2009:i:7241:d:10.1038_nature07949
    DOI: 10.1038/nature07949
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07949
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Lanjiao & Chatalova, Lioudmila & Gao, Xin & Zhang, Anlu, 2021. "Reduction of carbon emissions through resource-saving and environment-friendly regional economic integration: Evidence from Wuhan metropolitan area, China," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    2. Chunbo Chen & Chi Zhang, 2017. "Projecting the CO 2 and Climatic Change Effects on the Net Primary Productivity of the Urban Ecosystems in Phoenix, AZ in the 21st Century under Multiple RCP (Representative Concentration Pathway) Sce," Sustainability, MDPI, vol. 9(8), pages 1-20, August.
    3. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    4. Shao, Changkun & Yang, Kun & Tang, Wenjun & He, Yanyi & Jiang, Yaozhi & Lu, Hui & Fu, Haohuan & Zheng, Juepeng, 2022. "Convolutional neural network-based homogenization for constructing a long-term global surface solar radiation dataset," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
    6. Gu, Yunqian & Li, Gang & Sun, Yutong & Luo, Weihong & Liu, Xue & Zhang, Wei & Qi, Chunjie & Zhao, Yang & Tang, Kailei & Zhang, Yan & Shao, Liping & Xiong, Yan & Si, Chuanfei & Zhao, Chunjiang, 2017. "The effects of global dimming on the wheat crop grown in the Yangtze Basin of China simulated by SUCROS_LL, a process-based model," Ecological Modelling, Elsevier, vol. 350(C), pages 42-54.
    7. Chao Liu & Yuan Liang & Yajin Zhao & Shuangshuang Liu & Chunbo Huang, 2021. "Simulation and Analysis of the Effects of Land Use and Climate Change on Carbon Dynamics in the Wuhan City Circle Area," IJERPH, MDPI, vol. 18(21), pages 1-18, November.
    8. Dovern, Jonas & Harnisch, Sebastian & Klepper, Gernot & Platt, Ulrich & Oschlies, Andreas & Rickels, Wilfried, 2015. "Radiation Management: Gezielte Beeinflussung des globalen Strahlungshaushalts zur Kontrolle des anthropogenen Klimawandels," Kiel Discussion Papers 549/550, Kiel Institute for the World Economy (IfW Kiel).
    9. Akihiko Ito, 2017. "Solar radiation management and ecosystem functional responses," Climatic Change, Springer, vol. 142(1), pages 53-66, May.
    10. de Moraes Barbosa, Alexandrius & Rebes Zilliani, Rafael & Tiritan, Carlos Sérgio & Maia Souza, Gustavo & de Almeida Silva, Marcelo, 2021. "Energy conversion efficiency in sugarcane cultivars as a function of production environments in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Matheus Henrique Nunes & José Luís Campana Camargo & Grégoire Vincent & Kim Calders & Rafael S. Oliveira & Alfredo Huete & Yhasmin Mendes de Moura & Bruce Nelson & Marielle N. Smith & Scott C. Stark &, 2022. "Forest fragmentation impacts the seasonality of Amazonian evergreen canopies," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:458:y:2009:i:7241:d:10.1038_nature07949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.