IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39168-z.html
   My bibliography  Save this article

Demonstrating the value of beaches for adaptation to future coastal flood risk

Author

Listed:
  • Alexandra Toimil

    (IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria
    French Geological Survey)

  • Iñigo J. Losada

    (IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria)

  • Moisés Álvarez-Cuesta

    (IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria)

  • Gonéri Cozannet

    (French Geological Survey)

Abstract

Cost-effective coastal flood adaptation requires a realistic valuation of losses, costs and benefits considering the uncertainty of future flood projections and limited resources for adaptation. Here we present an approach to quantify the flood protection benefits of beaches accounting for the dynamic interaction of storm erosion, long-term shoreline evolution and flooding. We apply the method in Narrabeen-Collaroy (Australia) considering uncertainty in different shared socioeconomic pathways, sea-level rise projections, and beach conditions. By 2100, results show that failing to consider erosion can underestimate flood damage by a factor of 2 and maintaining present-day beach width can avoid 785 million AUD worth assets from flood damage. By 2050, the flood protection and recreational benefits of holding the current mean shoreline could be more than 150 times the cost of nourishment. Our results give insight on the benefits of beaches for adaptation and can help accelerate financial instruments for restoration.

Suggested Citation

  • Alexandra Toimil & Iñigo J. Losada & Moisés Álvarez-Cuesta & Gonéri Cozannet, 2023. "Demonstrating the value of beaches for adaptation to future coastal flood risk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39168-z
    DOI: 10.1038/s41467-023-39168-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39168-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39168-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dylan E. McNamara & Andrew Keeler, 2013. "A coupled physical and economic model of the response of coastal real estate to climate risk," Nature Climate Change, Nature, vol. 3(6), pages 559-562, June.
    2. Megan Mullin & Martin D. Smith & Dylan E. McNamara, 2019. "Paying to save the beach: effects of local finance decisions on coastal management," Climatic Change, Springer, vol. 152(2), pages 275-289, January.
    3. Daniel, Vanessa E. & Florax, Raymond J.G.M. & Rietveld, Piet, 2009. "Flooding risk and housing values: An economic assessment of environmental hazard," Ecological Economics, Elsevier, vol. 69(2), pages 355-365, December.
    4. Robert J. Nicholls & Daniel Lincke & Jochen Hinkel & Sally Brown & Athanasios T. Vafeidis & Benoit Meyssignac & Susan E. Hanson & Jan-Ludolf Merkens & Jiayi Fang, 2021. "A global analysis of subsidence, relative sea-level change and coastal flood exposure," Nature Climate Change, Nature, vol. 11(4), pages 338-342, April.
    5. Jan Huizinga & Hans de Moel & Wojciech Szewczyk, 2017. "Global flood depth-damage functions: Methodology and the database with guidelines," JRC Research Reports JRC105688, Joint Research Centre.
    6. Dylan E McNamara & Sathya Gopalakrishnan & Martin D Smith & A Brad Murray, 2015. "Climate Adaptation and Policy-Induced Inflation of Coastal Property Value," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-12, March.
    7. Gopalakrishnan, Sathya & Smith, Martin D. & Slott, Jordan M. & Murray, A. Brad, 2011. "The value of disappearing beaches: A hedonic pricing model with endogenous beach width," Journal of Environmental Economics and Management, Elsevier, vol. 61(3), pages 297-310, May.
    8. Claudia Tebaldi & Roshanka Ranasinghe & Michalis Vousdoukas & D. J. Rasmussen & Ben Vega-Westhoff & Ebru Kirezci & Robert E. Kopp & Ryan Sriver & Lorenzo Mentaschi, 2021. "Extreme sea levels at different global warming levels," Nature Climate Change, Nature, vol. 11(9), pages 746-751, September.
    9. Landry, Craig E. & Shonkwiler, J. Scott & Whitehead, John C., 2020. "Economic Values of Coastal Erosion Management: Joint Estimation of Use and Existence Values with recreation demand and contingent valuation data," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    10. Qiu, Yun & Gopalakrishnan, Sathya, 2018. "Shoreline defense against climate change and capitalized impact of beach nourishment," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 134-147.
    11. Beck, Michael W. & Heck, Nadine & Narayan, Siddharth & Menéndez, Pelayo & Reguero, Borja G. & Bitterwolf, Stephan & Torres-Ortega, Saul & Lange, Glenn-Marie & Pfliegner, Kerstin & Pietsch McNulty, Va, 2022. "Return on investment for mangrove and reef flood protection," Ecosystem Services, Elsevier, vol. 56(C).
    12. Robert J. Nicholls & Daniel Lincke & Jochen Hinkel & Sally Brown & Athanasios T. Vafeidis & Benoit Meyssignac & Susan E. Hanson & Jan-Ludolf Merkens & Jiayi Fang, 2021. "Author Correction: A global analysis of subsidence, relative sea-level change and coastal flood exposure," Nature Climate Change, Nature, vol. 11(7), pages 634-634, July.
    13. Eli D. Lazarus & Patrick W. Limber & Evan B. Goldstein & Rosie Dodd & Scott B. Armstrong, 2018. "Building back bigger in hurricane strike zones," Nature Sustainability, Nature, vol. 1(12), pages 759-762, December.
    14. Michalis I. Vousdoukas & Lorenzo Mentaschi & Evangelos Voukouvalas & Martin Verlaan & Svetlana Jevrejeva & Luke P. Jackson & Luc Feyen, 2018. "Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    15. Michalis I. Vousdoukas & Roshanka Ranasinghe & Lorenzo Mentaschi & Theocharis A. Plomaritis & Panagiotis Athanasiou & Arjen Luijendijk & Luc Feyen, 2020. "Sandy coastlines under threat of erosion," Nature Climate Change, Nature, vol. 10(3), pages 260-263, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dylan E. McNamara & Martin D. Smith & Zachary Williams & Sathya Gopalakrishnan & Craig E. Landry, 2024. "Policy and market forces delay real estate price declines on the US coast," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dylan E. McNamara & Martin D. Smith & Zachary Williams & Sathya Gopalakrishnan & Craig E. Landry, 2024. "Policy and market forces delay real estate price declines on the US coast," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Landry, Craig E. & Shonkwiler, J. Scott & Whitehead, John C., 2020. "Economic Values of Coastal Erosion Management: Joint Estimation of Use and Existence Values with recreation demand and contingent valuation data," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    3. David Wolf & Kenji Takeuchi, 2022. "Who Gives a Dam? Capitalization of Flood Protection in Fukuoka, Japan," Discussion Papers 2203, Graduate School of Economics, Kobe University.
    4. Craig E. Landry & Dylan Turner & Tom Allen, 2022. "Hedonic property prices and coastal beach width," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(3), pages 1373-1392, September.
    5. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    6. Rafael Almar & Julien Boucharel & Marcan Graffin & Gregoire Ondoa Abessolo & Gregoire Thoumyre & Fabrice Papa & Roshanka Ranasinghe & Jennifer Montano & Erwin W. J. Bergsma & Mohamed Wassim Baba & Fei, 2023. "Influence of El Niño on the variability of global shoreline position," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Wolf, David & Takeuchi, Kenji, 2022. "Holding back the storm: Dam capitalization in residential and commercial property values," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    8. Yun Qiu & Sathya Gopalakrishnan & H. Allen Klaiber & Xiaoyu Li, 2020. "Dredging the sand commons: the economic and geophysical drivers of beach nourishment," Climatic Change, Springer, vol. 162(2), pages 363-383, September.
    9. Nabanita Sarkar & Angela Rizzo & Vittoria Vandelli & Mauro Soldati, 2022. "A Literature Review of Climate-Related Coastal Risks in the Mediterranean, a Climate Change Hotspot," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    10. Megan Mullin & Martin D. Smith & Dylan E. McNamara, 2019. "Paying to save the beach: effects of local finance decisions on coastal management," Climatic Change, Springer, vol. 152(2), pages 275-289, January.
    11. Wieteska-Rosiak Beata, 2020. "Real Estate Sector in the Face of Climate Change Adaptation in Major Polish Cities," Real Estate Management and Valuation, Sciendo, vol. 28(1), pages 51-63, March.
    12. Abbie A. Rogers & Fiona L. Dempster & Jacob I. Hawkins & Robert J. Johnston & Peter C. Boxall & John Rolfe & Marit E. Kragt & Michael P. Burton & David J. Pannell, 2019. "Valuing non-market economic impacts from natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1131-1161, November.
    13. Dan S. Rickman, 2014. "Assessing Regional Quality of Life: A Call for Action in Regional Science," The Review of Regional Studies, Southern Regional Science Association, vol. 44(1), pages 1-12, Spring.
    14. Theodoros Chatzivasileiadis & Ignasi Cortes Arbues & Jochen Hinkel & Daniel Lincke & Richard S. J. Tol, 2023. "Actualised and future changes in regional economic growth through sea level rise," Papers 2401.00535, arXiv.org.
    15. Jlenia Di Noia, 2022. "Agent-Based Models for Climate Change Adaptation in Coastal Zones. A Review," Working Papers 2022.20, Fondazione Eni Enrico Mattei.
    16. Meri Davlasheridze & Qin Fan, 2019. "Valuing Seawall Protection in the Wake of Hurricane Ike," Economics of Disasters and Climate Change, Springer, vol. 3(3), pages 257-279, October.
    17. Dundas, Steven J., 2017. "Benefits and ancillary costs of natural infrastructure: Evidence from the New Jersey coast," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 62-80.
    18. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    19. Di Noia, Jlenia, 2022. "Agent-Based Models for Climate Change Adaptation in Coastal Zones. A Review," FEEM Working Papers 322810, Fondazione Eni Enrico Mattei (FEEM).
    20. Nguyen, Manh-Hung & Nguyen, Thi Lan Anh & Nguyen, Tuan & Reynaud, Arnaud & Simioni, Michel & Hoang, Viet-Ngu, 2021. "Economic analysis of choices among differing measures to manage coastal erosion in Hoi An (a UNESCO World Heritage Site)," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 529-543.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39168-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.