IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v11y2021i4d10.1038_s41558-021-00993-z.html
   My bibliography  Save this article

A global analysis of subsidence, relative sea-level change and coastal flood exposure

Author

Listed:
  • Robert J. Nicholls

    (University of East Anglia (UEA))

  • Daniel Lincke

    (Global Climate Forum)

  • Jochen Hinkel

    (Global Climate Forum
    Humboldt-University
    Humboldt-University)

  • Sally Brown

    (Bournemouth University)

  • Athanasios T. Vafeidis

    (Department of Geography)

  • Benoit Meyssignac

    (Université de Toulouse, CNES, CNRS, UPS, IRD)

  • Susan E. Hanson

    (University of Southampton)

  • Jan-Ludolf Merkens

    (Department of Geography)

  • Jiayi Fang

    (East China Normal University)

Abstract

Climate-induced sea-level rise and vertical land movements, including natural and human-induced subsidence in sedimentary coastal lowlands, combine to change relative sea levels around the world’s coasts. Although this affects local rates of sea-level rise, assessments of the coastal impacts of subsidence are lacking on a global scale. Here, we quantify global-mean relative sea-level rise to be 2.6 mm yr−1 over the past two decades. However, as coastal inhabitants are preferentially located in subsiding locations, they experience an average relative sea-level rise up to four times faster at 7.8 to 9.9 mm yr−1. These results indicate that the impacts and adaptation needs are much higher than reported global sea-level rise measurements suggest. In particular, human-induced subsidence in and surrounding coastal cities can be rapidly reduced with appropriate policy for groundwater utilization and drainage. Such policy would offer substantial and rapid benefits to reduce growth of coastal flood exposure due to relative sea-level rise.

Suggested Citation

  • Robert J. Nicholls & Daniel Lincke & Jochen Hinkel & Sally Brown & Athanasios T. Vafeidis & Benoit Meyssignac & Susan E. Hanson & Jan-Ludolf Merkens & Jiayi Fang, 2021. "A global analysis of subsidence, relative sea-level change and coastal flood exposure," Nature Climate Change, Nature, vol. 11(4), pages 338-342, April.
  • Handle: RePEc:nat:natcli:v:11:y:2021:i:4:d:10.1038_s41558-021-00993-z
    DOI: 10.1038/s41558-021-00993-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-021-00993-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-021-00993-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Selasi YAO AVORNYO & Kwasi APPEANING ADDO & Pietro TEATINI & Philip S.J. MINDERHOUD & Marie-Noëlle WOILLEZ, 2023. "Vulnerability of Ghana’s Coast to Relative Sea-level Rise: A Scoping Review," Working Paper c0e9d81f-7c77-47ca-ba56-a, Agence française de développement.
    2. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Nabanita Sarkar & Angela Rizzo & Vittoria Vandelli & Mauro Soldati, 2022. "A Literature Review of Climate-Related Coastal Risks in the Mediterranean, a Climate Change Hotspot," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    4. Leon HAUSER & Roberta BONI & Philip S.J. MINDERHOUD & Pietro TEATINI & Marie-Noëlle WOILLEZ & Rafael ALMAR & Selasi Yao AVORNYO & Kwasi APPEANING ADDO, 2023. "A scoping study on coastal vulnerability to relative sealevel rise in the Gulf of Guinea," Working Paper da6cc701-670f-4e44-bf9c-c, Agence française de développement.
    5. Alexandra Toimil & Iñigo J. Losada & Moisés Álvarez-Cuesta & Gonéri Cozannet, 2023. "Demonstrating the value of beaches for adaptation to future coastal flood risk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Theodoros Chatzivasileiadis & Ignasi Cortes Arbues & Jochen Hinkel & Daniel Lincke & Richard S. J. Tol, 2023. "Actualised and future changes in regional economic growth through sea level rise," Papers 2401.00535, arXiv.org.
    7. Rita Tufano & Luigi Guerriero & Mariagiulia Annibali Corona & Giuseppe Cianflone & Diego Di Martire & Fabio Ietto & Alessandro Novellino & Concetta Rispoli & Claudia Zito & Domenico Calcaterra, 2023. "Multiscenario flood hazard assessment using probabilistic runoff hydrograph estimation and 2D hydrodynamic modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1029-1051, March.
    8. Chenlei Guan & Damin Dong & Feng Shen & Xin Gao & Linyan Chen, 2022. "Hierarchical Structure Model of Safety Risk Factors in New Coastal Towns: A Systematic Analysis Using the DEMATEL-ISM-SNA Method," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    9. Sally Brown & Katie Jenkins & Philip Goodwin & Daniel Lincke & Athanasios T. Vafeidis & Richard S. J. Tol & Rhosanna Jenkins & Rachel Warren & Robert J. Nicholls & Svetlana Jevrejeva & Agustin Sanchez, 2021. "Global costs of protecting against sea-level rise at 1.5 to 4.0 °C," Climatic Change, Springer, vol. 167(1), pages 1-21, July.
    10. Kui Xu & Chenyue Wang & Lingling Bin, 2023. "Compound flood models in coastal areas: a review of methods and uncertainty analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 469-496, March.
    11. Marie-Noëlle WOILLEZ & Femi Emmanuel IKUEMONISAN & Vitalis Chidi OZEBO & Philip S.J. MINDERHOUD & Pietro TEATINI, 2023. "A scoping review of the vulnerability of Nigeria's coastland to sea-level rise and the contribution of land subsidence," Working Paper af68695f-dcee-4c1e-9daf-6, Agence française de développement.
    12. Karine Bastos Leal & Luís Eduardo de Souza Robaina & André de Souza De Lima, 2022. "Coastal impacts of storm surges on a changing climate: a global bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1455-1476, November.
    13. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:11:y:2021:i:4:d:10.1038_s41558-021-00993-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.