IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i3p470-d1598379.html
   My bibliography  Save this article

Quantifying Land Subsidence Probability and Intensity Using Weighted Bayesian Modeling in Shanghai, China

Author

Listed:
  • Chengming Jin

    (School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200233, China)

  • Qing Zhan

    (Shanghai Institute of Natural Resources Survey and Utilization, Shanghai 200072, China)

  • Yujin Shi

    (Shanghai Institute of Natural Resources Survey and Utilization, Shanghai 200072, China)

  • Chengcheng Wan

    (School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200233, China)

  • Huan Zhang

    (Shanghai Institute of Natural Resources Survey and Utilization, Shanghai 200072, China)

  • Luna Zhao

    (School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200233, China)

  • Jianli Liu

    (School of Science, Technology and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD 4556, Australia)

  • Tongfei Tian

    (School of Science, Technology and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD 4556, Australia)

  • Zilong Liu

    (School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200233, China)

  • Jiahong Wen

    (School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200233, China)

Abstract

Land subsidence, a slow-onset geohazard, poses a severe threat to cities worldwide. However, the lack of quantification in terms of intensity, probability, and hazard zoning complicates the assessment and understanding of the land subsidence risk. In this study, we employ a weighted Bayesian model to explicitly present the spatial distribution of land subsidence probability and map hazard zoning in Shanghai. Two scenarios based on distinct aquifers are analyzed. Our findings reveal the following: (1) The cumulative land subsidence probability density functions in Shanghai follow a skewed distribution, primarily ranging between 0 and 50 mm, with a peak probability at 25 mm for the period 2017–2021. The proportions of cumulative subsidence above 100 mm and between 50 and 100 mm are significantly lower for 2017–2021 compared to those for 2012–2016, indicating a continuous slowdown in land subsidence in Shanghai. (2) Using the cumulative subsidence from 2017–2021 as a measure of posterior probability, the probability distribution of land subsidence under the first scenario ranges from 0.02 to 0.97. The very high probability areas are mainly located in the eastern peripheral regions of Shanghai and the peripheral areas of Chongming District. Under the second scenario, the probability ranges from 0.04 to 0.98, with high probability areas concentrated in the eastern coastal area of Pudong District and regions with intensive construction activity. (3) The Fit statistics for Scenario I and Scenario II are 67% and 70%, respectively, indicating a better fit for Scenario II. (4) High-, medium-, low-, and very low-hazard zones in Shanghai account for 14.2%, 48.7%, 23.6%, and 13.5% of the city, respectively. This work develops a method based on the weighted Bayesian model for assessing and zoning land subsidence hazards, providing a basis for land subsidence risk assessment in Shanghai.

Suggested Citation

  • Chengming Jin & Qing Zhan & Yujin Shi & Chengcheng Wan & Huan Zhang & Luna Zhao & Jianli Liu & Tongfei Tian & Zilong Liu & Jiahong Wen, 2025. "Quantifying Land Subsidence Probability and Intensity Using Weighted Bayesian Modeling in Shanghai, China," Land, MDPI, vol. 14(3), pages 1-20, February.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:470-:d:1598379
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/3/470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/3/470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meagan J. Harris & Jonah Stinson & Wayne G. Landis, 2017. "A Bayesian Approach to Integrated Ecological and Human Health Risk Assessment for the South River, Virginia Mercury‐Contaminated Site," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1341-1357, July.
    2. Xi-Cun He & Tian-Liang Yang & Shui-Long Shen & Ye-Shuang Xu & Arul Arulrajah, 2019. "Land Subsidence Control Zone and Policy for the Environmental Protection of Shanghai," IJERPH, MDPI, vol. 16(15), pages 1-13, July.
    3. Ye-Shuang Xu & Shui-Long Shen & Zheng-Yin Cai & Guo-Yun Zhou, 2008. "The state of land subsidence and prediction approaches due to groundwater withdrawal in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 123-135, April.
    4. Robert J. Nicholls & Daniel Lincke & Jochen Hinkel & Sally Brown & Athanasios T. Vafeidis & Benoit Meyssignac & Susan E. Hanson & Jan-Ludolf Merkens & Jiayi Fang, 2021. "A global analysis of subsidence, relative sea-level change and coastal flood exposure," Nature Climate Change, Nature, vol. 11(4), pages 338-342, April.
    5. Ye-Shuang Xu & Lei Ma & Yan-Jun Du & Shui-Long Shen, 2012. "Analysis of urbanisation-induced land subsidence in Shanghai," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1255-1267, September.
    6. Federica Totaro & Ines Alberico & Diego Di Martire & Concettina Nunziata & Paola Petrosino, 2020. "The key role of hazard indices and hotspot in disaster risk management: the case study of Napoli and Pozzuoli municipalities (Southern Italy)," Journal of Maps, Taylor & Francis Journals, vol. 16(2), pages 68-78, December.
    7. Fangtian Liu & Erqi Xu & Hongqi Zhang, 2024. "Assessing typhoon disaster mitigation capacity and its uncertainty analysis in Hainan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9401-9420, September.
    8. Jonas Sundell & Ezra Haaf & Tommy Norberg & Claes Alén & Mats Karlsson & Lars Rosén, 2019. "Risk Mapping of Groundwater‐Drawdown‐Induced Land Subsidence in Heterogeneous Soils on Large Areas," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 105-124, January.
    9. Sèna Donalde Dolorès Marguerite Déguénon & Richard Adade & Oscar Teka & Denis Worlanyo Aheto & Brice Sinsin, 2024. "Sea-level rise and flood mapping: a review of models for coastal management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2155-2178, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong-Xia Wu & Tian-Liang Yang & Pei-Chao Li & Jin-Xin Lin, 2019. "Investigation of Groundwater Withdrawal and Recharge Affecting Underground Structures in the Shanghai Urban Area," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    2. Ye-Shuang Xu & Shui-Long Shen & Dong-Jie Ren & Huai-Na Wu, 2016. "Analysis of Factors in Land Subsidence in Shanghai: A View Based on a Strategic Environmental Assessment," Sustainability, MDPI, vol. 8(6), pages 1-12, June.
    3. Yu-You Yang & Huai-Na Wu & Shui-Long Shen & Suksun Horpibulsuk & Ye-Shuang Xu & Qing-Hong Zhou, 2014. "Environmental impacts caused by phosphate mining and ecological restoration: a case history in Kunming, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 755-770, November.
    4. Xi-Cun He & Tian-Liang Yang & Shui-Long Shen & Ye-Shuang Xu & Arul Arulrajah, 2019. "Land Subsidence Control Zone and Policy for the Environmental Protection of Shanghai," IJERPH, MDPI, vol. 16(15), pages 1-13, July.
    5. Selasi YAO AVORNYO & Kwasi APPEANING ADDO & Pietro TEATINI & Philip S.J. MINDERHOUD & Marie-Noëlle WOILLEZ, 2023. "Vulnerability of Ghana’s Coast to Relative Sea-level Rise: A Scoping Review," Working Paper c0e9d81f-7c77-47ca-ba56-a, Agence française de développement.
    6. Yiyue Wang & Runyu Fan & Jining Yan & Min Jin & Xinya Lei & Yuewei Wang & Weijing Song, 2025. "An analysis of urban land subsidence susceptibility based on complex network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(1), pages 815-837, January.
    7. Lu, Yanhua & Yan, Lijuan & Li, Jie & Liang, Yunliang & Yang, Chuanjie & Li, Guang & Wu, Jiangqi & Xu, Hua, 2024. "Spatiotemporal evolution of county level ecological security based on an emergy ecological footprint model: The case of Dingxi, China," Ecological Modelling, Elsevier, vol. 490(C).
    8. Theodoros Chatzivasileiadis & Ignasi Cortes Arbues & Daniel Lincke & Jochen Hinkel & Theodoros Chatzivasileiadis & Richard S.J. Tol, "undated". "Actualised and future changes in regional economic growth through sea level rise," Working Paper Series 0324, Department of Economics, University of Sussex Business School.
    9. Ya-Qiong Wang & Shao-Bing Zhang & Long-Long Chen & Yong-Li Xie & Zhi-Feng Wang, 2019. "Field monitoring on deformation of high rock slope during highway construction: A case study in Wenzhou, China," International Journal of Distributed Sensor Networks, , vol. 15(12), pages 15501477198, December.
    10. Verschuur,Jasper & Becher,Olivia Rose Elizabeth & Schwantje,Tom & Mathijs Van Ledden & Kazi,Swarna & Urrutia Duarte,Ignacio M., 2023. "Welfare and Climate Risks in Coastal Bangladesh : The Impacts of Climatic Extremes onMultidimensional Poverty and the Wider Benefits of Climate Adaptation," Policy Research Working Paper Series 10373, The World Bank.
    11. Dilshad Ahmad & Sidra Khurshid & Muhammad Afzal, 2024. "Climate change vulnerability and multidimensional poverty in flood prone rural areas of Punjab, Pakistan: an application of multidimensional poverty index and livelihood vulnerability index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 13325-13352, May.
    12. Baoxing Jiang & Kun Zhang & Xiaopeng Liu & Yuxi Lu, 2023. "Prediction model with multi-point relationship fusion via graph convolutional network: A case study on mining-induced surface subsidence," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-17, August.
    13. Beibei Hu & Jun Zhou & Shiyuan Xu & Zhenlou Chen & Jun Wang & Dongqi Wang & Lei Wang & Jifa Guo & Weiqing Meng, 2013. "Assessment of hazards and economic losses induced by land subsidence in Tianjin Binhai new area from 2011 to 2020 based on scenario analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 873-886, March.
    14. Peng Tian & Jialin Li & Hongbo Gong & Ruiliang Pu & Luodan Cao & Shuyao Shao & Zuoqi Shi & Xiuli Feng & Lijia Wang & Riuqing Liu, 2019. "Research on Land Use Changes and Ecological Risk Assessment in Yongjiang River Basin in Zhejiang Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    15. Guodong Li & Hongzhi Wang & Zhaoxuan Liu & Honglin Liu & Haitian Yan & Zenwei Liu, 2022. "Effects of Aeolian Sand and Water−Cement Ratio on Performance of a Novel Mine Backfill Material," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    16. repec:osf:socarx:tqfns_v1 is not listed on IDEAS
    17. Ye-Shuang Xu & Yao Yuan & Shui-Long Shen & Zhen-Yu Yin & Huai-Na Wu & Lei Ma, 2015. "Investigation into subsidence hazards due to groundwater pumping from Aquifer II in Changzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 281-296, August.
    18. Alexandra Toimil & Iñigo J. Losada & Moisés Álvarez-Cuesta & Gonéri Cozannet, 2023. "Demonstrating the value of beaches for adaptation to future coastal flood risk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Ahmed M. Youssef & Mazen M. Abu Abdullah & Biswajeet Pradhan & Ahmed F. D. Gaber, 2019. "Agriculture Sprawl Assessment Using Multi-Temporal Remote Sensing Images and Its Environmental Impact; Al-Jouf, KSA," Sustainability, MDPI, vol. 11(15), pages 1-16, August.
    20. Ze-Nian Wang & Jun Chen & Wen-Chieh Cheng & Arul Arulrajah & Suksun Horpibulsuk, 2018. "Investigation into the tempo-spatial distribution of recent fire hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1889-1907, July.
    21. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:470-:d:1598379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.