IDEAS home Printed from https://ideas.repec.org/p/avg/wpaper/en15581.html
   My bibliography  Save this paper

Vulnerability of Ghana’s Coast to Relative Sea-level Rise: A Scoping Review

Author

Listed:
  • Selasi YAO AVORNYO
  • Kwasi APPEANING ADDO
  • Pietro TEATINI
  • Philip S.J. MINDERHOUD
  • Marie-Noëlle WOILLEZ

Abstract

Coastal areas are regions of essential value that are home to a myriad of services. However, population growth and climate change along with their cascading impacts have had profound impacts on their topography and evolution. Consequently, many coastal regions, of which Ghana’s coast is no exception, are incessantly plagued with hazards that are increasing in both magnitude and frequency. Predominantly through the recurrence of floods and erosion, Ghana’s coast is increasingly becoming susceptible, with huge socioeconomic implications considering its environment dependent economy. Several previous attempts have been made to assess Ghana’s coastal vulnerability to comprehend the complexities underpinning the occurrence of these hazards. Most studies blame global sea-level rise, but coastal land subsidence could also have significant impacts. Indeed, land subsidence is a major component of relative sea-level rise in many coastal cities worldwide. Drawing on extant literature in Ghana, this scoping study provides an overview of three crucial and interrelated dimensions: sea-level rise, subsidence and coastal vulnerability. We also identify crucial knowledge gaps which impede comprehensive risk assessment of Ghana’s coast. The survey findings indicate a significant understudy of these issues albeit posing potential threats to Ghana’s coast. It brought to light the absence of a ground-validated subsidence study; a non-identification of potential local subsidence drivers; a non-availability of a subsidence-infused coastal vulnerability assessment; non existing studies on combined effects of climate change and subsidence; and huge deficits in available data for numerical modelling of coastal subsidence. A case study of the Volta delta using the PS-InSAR technique and Global Positioning System (GPS) surveys is also provided. It establishes the occurrence of subsidence. Interferograms of Sentinel-1 data from 2016 to 2020 indicated deformation rates ranging from -9.16 mm/yr to 1.77 mm/yr, with a majority of persistent scatterers (99.81%) showing land subsidence. Guided by the identified knowledge and data gaps and the need to mitigate impacts, the study recommends a thorough assessment of relative sea-level rise and coastal vulnerability; a continuous and long-term monitoring framework for drivers of change; a review of coastal management strategies; and the establishment of continuous GPS stations, tidal stations, elevation benchmarks.

Suggested Citation

  • Selasi YAO AVORNYO & Kwasi APPEANING ADDO & Pietro TEATINI & Philip S.J. MINDERHOUD & Marie-Noëlle WOILLEZ, 2023. "Vulnerability of Ghana’s Coast to Relative Sea-level Rise: A Scoping Review," Working Paper c0e9d81f-7c77-47ca-ba56-a, Agence française de développement.
  • Handle: RePEc:avg:wpaper:en15581
    as

    Download full text from publisher

    File URL: https://www.afd.fr/sites/afd/files/2023-06-12-15-33/PR_282_VA_1_Web.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert J. Nicholls & Daniel Lincke & Jochen Hinkel & Sally Brown & Athanasios T. Vafeidis & Benoit Meyssignac & Susan E. Hanson & Jan-Ludolf Merkens & Jiayi Fang, 2021. "A global analysis of subsidence, relative sea-level change and coastal flood exposure," Nature Climate Change, Nature, vol. 11(4), pages 338-342, April.
    2. Marie-Noëlle WOILLEZ & Femi Emmanuel IKUEMONISAN & Vitalis Chidi OZEBO & Philip S.J. MINDERHOUD & Pietro TEATINI, 2023. "A scoping review of the vulnerability of Nigeria's coastland to sea-level rise and the contribution of land subsidence," Working Paper af68695f-dcee-4c1e-9daf-6, Agence française de développement.
    3. A. Hooijer & R. Vernimmen, 2021. "Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Oz Sahin & Sherif Mohamed, 2014. "Coastal vulnerability to sea-level rise: a spatial–temporal assessment framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 395-414, January.
    5. Laury Miller & Bruce C. Douglas, 2004. "Mass and volume contributions to twentieth-century global sea level rise," Nature, Nature, vol. 428(6981), pages 406-409, March.
    6. Daystar Babanawo & Precious Agbeko D. Mattah & Samuel K. M. Agblorti & Emmanuel K. Brempong & Memuna Mawusi Mattah & Denis Worlanyo Aheto, 2022. "Local Indicator-Based Flood Vulnerability Indices and Predictors of Relocation in the Ketu South Municipal Area of Ghana," Sustainability, MDPI, vol. 14(9), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leon HAUSER & Roberta BONI & Philip S.J. MINDERHOUD & Pietro TEATINI & Marie-Noëlle WOILLEZ & Rafael ALMAR & Selasi Yao AVORNYO & Kwasi APPEANING ADDO, 2023. "A scoping study on coastal vulnerability to relative sealevel rise in the Gulf of Guinea," Working Paper da6cc701-670f-4e44-bf9c-c, Agence française de développement.
    2. Marie-Noëlle WOILLEZ & Femi Emmanuel IKUEMONISAN & Vitalis Chidi OZEBO & Philip S.J. MINDERHOUD & Pietro TEATINI, 2023. "A scoping review of the vulnerability of Nigeria's coastland to sea-level rise and the contribution of land subsidence," Working Paper af68695f-dcee-4c1e-9daf-6, Agence française de développement.
    3. Nawin Raj, 2022. "Prediction of Sea Level with Vertical Land Movement Correction Using Deep Learning," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
    4. Theodoros Chatzivasileiadis & Ignasi Cortes Arbues & Jochen Hinkel & Daniel Lincke & Richard S. J. Tol, 2023. "Actualised and future changes in regional economic growth through sea level rise," Papers 2401.00535, arXiv.org.
    5. Rita Tufano & Luigi Guerriero & Mariagiulia Annibali Corona & Giuseppe Cianflone & Diego Di Martire & Fabio Ietto & Alessandro Novellino & Concetta Rispoli & Claudia Zito & Domenico Calcaterra, 2023. "Multiscenario flood hazard assessment using probabilistic runoff hydrograph estimation and 2D hydrodynamic modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1029-1051, March.
    6. Martínez-Hernández, Alberto Gabino, 2022. "System Dynamics Modelling and Climate Change Adaptation in Coastal Areas: A Literature Review," FEEM Working Papers 322836, Fondazione Eni Enrico Mattei (FEEM).
    7. Mehdi Hafezi & Oz Sahin & Rodney A. Stewart & Brendan Mackey, 2018. "Creating a Novel Multi-Layered Integrative Climate Change Adaptation Planning Approach Using a Systematic Literature Review," Sustainability, MDPI, vol. 10(11), pages 1-30, November.
    8. Peng Zhang & Lanyimin Li & Yishu Wang & Chengchun Shi & Chenchen Fan, 2021. "Influence of Riverbed Incision and Hydrological Evolution on Water Quality and Water Age Based on Numerical Simulation: A Case Study of the Minjiang Estuary," IJERPH, MDPI, vol. 18(11), pages 1-19, June.
    9. Chenlei Guan & Damin Dong & Feng Shen & Xin Gao & Linyan Chen, 2022. "Hierarchical Structure Model of Safety Risk Factors in New Coastal Towns: A Systematic Analysis Using the DEMATEL-ISM-SNA Method," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    10. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    11. Alexandra Toimil & Iñigo J. Losada & Moisés Álvarez-Cuesta & Gonéri Cozannet, 2023. "Demonstrating the value of beaches for adaptation to future coastal flood risk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Alberto Gabino Martínez-Hernández, 2022. "System Dynamics modelling and Climate Change Adaptation in Coastal Areas: A literature review," Working Papers 2022.21, Fondazione Eni Enrico Mattei.
    13. Nerea Portillo Juan & Vicente Negro Valdecantos & Jose María del Campo, 2022. "Review of the Impacts of Climate Change on Ports and Harbours and Their Adaptation in Spain," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
    14. Ramiro Parrado & Francesco Bosello & Elisa Delpiazzo & Jochen Hinkel & Daniel Lincke & Sally Brown, 2020. "Fiscal effects and the potential implications on economic growth of sea-level rise impacts and coastal zone protection," Climatic Change, Springer, vol. 160(2), pages 283-302, May.
    15. Timothy M. Lenton & Chi Xu & Jesse F. Abrams & Ashish Ghadiali & Sina Loriani & Boris Sakschewski & Caroline Zimm & Kristie L. Ebi & Robert R. Dunn & Jens-Christian Svenning & Marten Scheffer, 2023. "Quantifying the human cost of global warming," Nature Sustainability, Nature, vol. 6(10), pages 1237-1247, October.
    16. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Kui Xu & Chenyue Wang & Lingling Bin, 2023. "Compound flood models in coastal areas: a review of methods and uncertainty analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 469-496, March.
    18. Karine Bastos Leal & Luís Eduardo de Souza Robaina & André de Souza De Lima, 2022. "Coastal impacts of storm surges on a changing climate: a global bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1455-1476, November.
    19. Nabanita Sarkar & Angela Rizzo & Vittoria Vandelli & Mauro Soldati, 2022. "A Literature Review of Climate-Related Coastal Risks in the Mediterranean, a Climate Change Hotspot," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    20. Lena Reimann & Bryan Jones & Nora Bieker & Claudia Wolff & Jeroen C.J.H. Aerts & Athanasios T. Vafeidis, 2023. "Exploring spatial feedbacks between adaptation policies and internal migration patterns due to sea-level rise," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Keywords

    Ghana;

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:avg:wpaper:en15581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AFD (email available below). General contact details of provider: https://edirc.repec.org/data/afdgvfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.