IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v116y2023i1d10.1007_s11069-022-05710-3.html
   My bibliography  Save this article

Multiscenario flood hazard assessment using probabilistic runoff hydrograph estimation and 2D hydrodynamic modelling

Author

Listed:
  • Rita Tufano

    (Federico II University of Naples)

  • Luigi Guerriero

    (Federico II University of Naples)

  • Mariagiulia Annibali Corona

    (Federico II University of Naples)

  • Giuseppe Cianflone

    (University of Study Calabria)

  • Diego Di Martire

    (Federico II University of Naples)

  • Fabio Ietto

    (University of Study Calabria)

  • Alessandro Novellino

    (British Geological Survey)

  • Concetta Rispoli

    (Federico II University of Naples)

  • Claudia Zito

    (Federico II University of Naples)

  • Domenico Calcaterra

    (Federico II University of Naples)

Abstract

In this paper, we aim to define a procedure of flood hazard assessment applicable to large river basins in which flood events can be induced/sustained by the full basin area or by fractions of the total area as functions of the extent of the triggering precipitation event. The proposed procedure is based on a combined approach accounting for (1) the reconstruction of intensity–duration–frequency curves expressing the magnitude in terms of intensity for multiple return periods; (2) the application of the soil conservation service method for runoff estimation from a selected rainfall scenario considering some characteristics of the basin (i.e. soil type, land use/treatment, surface condition, and antecedent moisture conditions); (3) 2D hydrodynamic modelling conducted by the HEC-RAS model using runoff hydrographs as hydrological input data; (4) the reconstruction of flood hazard maps by overlaying multiple inundation maps depicting flood extent for different return periods. To account for the variability in the extent of the triggering precipitation event and the resulting input hydrograph, multiple contributing areas are considered. The procedure is tested at the archaeological site of Sybaris in southern Italy, which is periodically involved in flood events of variable magnitude. The obtained results highlight that the variable extent of the floodable area is strongly conditioned by the extent of the contributing area and return period, as expected. The archaeological site is always involved in the simulated flooding process, except for the smallest contributing area for which only a 300-year event involves this part of the site. Our findings may be useful for developing and supporting flood risk management plans in the area. The developed procedure might be easily exported and tested in other fluvial contexts in which evaluations of multiple flood hazard scenarios, due to the basin geometry and extent, are needed.

Suggested Citation

  • Rita Tufano & Luigi Guerriero & Mariagiulia Annibali Corona & Giuseppe Cianflone & Diego Di Martire & Fabio Ietto & Alessandro Novellino & Concetta Rispoli & Claudia Zito & Domenico Calcaterra, 2023. "Multiscenario flood hazard assessment using probabilistic runoff hydrograph estimation and 2D hydrodynamic modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1029-1051, March.
  • Handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05710-3
    DOI: 10.1007/s11069-022-05710-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05710-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05710-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Furdada & L. Calderón & M. Marqués, 2008. "Flood hazard map of La Trinidad (NW Nicaragua). Method and results," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(2), pages 183-195, May.
    2. Luigi Guerriero & Mariano Focareta & Gennaro Fusco & Raffaele Rabuano & Francesco M. Guadagno & Paola Revellino, 2018. "Flood hazard of major river segments, Benevento Province, Southern Italy," Journal of Maps, Taylor & Francis Journals, vol. 14(2), pages 597-606, November.
    3. Robert J. Nicholls & Daniel Lincke & Jochen Hinkel & Sally Brown & Athanasios T. Vafeidis & Benoit Meyssignac & Susan E. Hanson & Jan-Ludolf Merkens & Jiayi Fang, 2021. "A global analysis of subsidence, relative sea-level change and coastal flood exposure," Nature Climate Change, Nature, vol. 11(4), pages 338-342, April.
    4. Paolo Magliulo & Angelo Cusano, 2016. "Geomorphology of the Lower Calore River alluvial plain (Southern Italy)," Journal of Maps, Taylor & Francis Journals, vol. 12(5), pages 1119-1127, October.
    5. Romulus Costache, 2019. "Flood Susceptibility Assessment by Using Bivariate Statistics and Machine Learning Models - A Useful Tool for Flood Risk Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3239-3256, July.
    6. Lin Lin & Zening Wu & Qiuhua Liang, 2019. "Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 455-475, June.
    7. Pedro Gonçalves & Inês Marafuz & Alberto Gomes, 2015. "Flood hazard, Santa Cruz do Bispo Sector, Leça River, Portugal: a methodological contribution to improve land use planning," Journal of Maps, Taylor & Francis Journals, vol. 11(5), pages 760-771, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Magliulo & Sofia Sessa & Angelo Cusano & Marika Beatrice & Alberto Giannini & Filippo Russo, 2022. "Assessing the Morphological Quality of the Calore River (Southern Italy)," Geographies, MDPI, vol. 2(3), pages 1-25, June.
    2. Selasi YAO AVORNYO & Kwasi APPEANING ADDO & Pietro TEATINI & Philip S.J. MINDERHOUD & Marie-Noëlle WOILLEZ, 2023. "Vulnerability of Ghana’s Coast to Relative Sea-level Rise: A Scoping Review," Working Paper c0e9d81f-7c77-47ca-ba56-a, Agence française de développement.
    3. Huali Chen & Yuka Ito & Marie Sawamukai & Tomochika Tokunaga, 2015. "Flood hazard assessment in the Kujukuri Plain of Chiba Prefecture, Japan, based on GIS and multicriteria decision analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 105-120, August.
    4. Anna Palla & Ilaria Gnecco, 2021. "The Web-GIS TRIG Eau Platform to Assess Urban Flood Mitigation by Domestic Rainwater Harvesting Systems in Two Residential Settlements in Italy," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    5. Theodoros Chatzivasileiadis & Ignasi Cortes Arbues & Jochen Hinkel & Daniel Lincke & Richard S. J. Tol, 2023. "Actualised and future changes in regional economic growth through sea level rise," Papers 2401.00535, arXiv.org.
    6. Huali Chen & Yuka Ito & Marie Sawamukai & Tao Su & Tomochika Tokunaga, 2016. "Spatial and temporal changes in flood hazard potential at coastal lowland area: a case study in the Kujukuri Plain, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1513-1527, December.
    7. Gabriela Reis & Francisco Assis Souza Filho & Donald Robert Nelson & Renan Vieira Rocha & Samiria Maria Oliveira Silva, 2020. "Development of a drought vulnerability index using MCDM and GIS: study case in São Paulo and Ceará, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1781-1799, November.
    8. Gianna Ida Festa & Luigi Guerriero & Mariano Focareta & Giuseppe Meoli & Silvana Revellino & Francesco Maria Guadagno & Paola Revellino, 2022. "Calculating Economic Flood Damage through Microscale Risk Maps and Data Generalization: A Pilot Study in Southern Italy," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    9. Chenlei Guan & Damin Dong & Feng Shen & Xin Gao & Linyan Chen, 2022. "Hierarchical Structure Model of Safety Risk Factors in New Coastal Towns: A Systematic Analysis Using the DEMATEL-ISM-SNA Method," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    10. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    11. Alexandra Toimil & Iñigo J. Losada & Moisés Álvarez-Cuesta & Gonéri Cozannet, 2023. "Demonstrating the value of beaches for adaptation to future coastal flood risk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Gerardo Grelle & Antonietta Rossi & Paola Revellino & Luigi Guerriero & Francesco Maria Guadagno & Giuseppe Sappa, 2019. "Assessment of Debris-Flow Erosion and Deposit Areas by Morphometric Analysis and a GIS-Based Simplified Procedure: A Case Study of Paupisi in the Southern Apennines," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    13. Nikunj K. Mangukiya & Ashutosh Sharma, 2022. "Flood risk mapping for the lower Narmada basin in India: a machine learning and IoT-based framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1285-1304, September.
    14. Sina Paryani & Mojgan Bordbar & Changhyun Jun & Mahdi Panahi & Sayed M. Bateni & Christopher M. U. Neale & Hamidreza Moeini & Saro Lee, 2023. "Hybrid-based approaches for the flood susceptibility prediction of Kermanshah province, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 837-868, March.
    15. Antonio Santo & Nicoletta Santangelo & Giovanni Forte & Melania De Falco, 2017. "Post flash flood survey: the 14th and 15th October 2015 event in the Paupisi-Solopaca area (Southern Italy)," Journal of Maps, Taylor & Francis Journals, vol. 13(2), pages 19-25, November.
    16. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Kui Xu & Chenyue Wang & Lingling Bin, 2023. "Compound flood models in coastal areas: a review of methods and uncertainty analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 469-496, March.
    18. Karine Bastos Leal & Luís Eduardo de Souza Robaina & André de Souza De Lima, 2022. "Coastal impacts of storm surges on a changing climate: a global bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1455-1476, November.
    19. Raymond Seyeram Nkonu & Mary Antwi & Mark Amo-Boateng & Benjamin Wullobayi Dekongmen, 2023. "GIS-based multi-criteria analytical hierarchy process modelling for urban flood vulnerability analysis, Accra Metropolis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1541-1568, June.
    20. Gheorghe Romanescu & Catalin I. Cimpianu & Alin Mihu-Pintilie & Cristian C. Stoleriu, 2017. "Historic flood events in NE Romania (post-1990)," Journal of Maps, Taylor & Francis Journals, vol. 13(2), pages 787-798, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05710-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.