IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i7d10.1007_s11069-024-07102-1.html
   My bibliography  Save this article

Variability in vertical land motion along SW Indian coast: implications for inundation hazards due to sea-level rise

Author

Listed:
  • Arpan Shastri

    (Space Applications Centre (ISRO)
    Kurukshetra University)

  • K. M. Sreejith

    (Space Applications Centre (ISRO))

  • Ritesh Agrawal

    (Space Applications Centre (ISRO))

  • B. S. Chaudhary

    (Kurukshetra University)

Abstract

The combined effect of land subsidence and sea-level rise (SLR) leading to coastal inundation is a major threat for global coastal cities. The densely populated tropical Asian cities are believed to be the most affected regions by the rise of sea level. While the SLR is a global phenomenon, the magnitude and extent of the vertical land motion (VLM) varies locally and are often not considered for the estimation of coastal inundation hazard. In this study, we analyse the spatio-temporal variations in the vertical land motion and its impact on the coastal inundation for two densely populated tropical coastal cities and surrounding regions (Kochi and Trivandrum) situated along the south-western coast of India using Interferometric Synthetic Aperture Radar measurements from ALOS-1 (2007-2011) and Sentinel-1 (2015–2022) satellites in conjunction with piezometric level, tide-gauge and satellite altimetry measurements. Our findings indicate that VLM in Kochi is mainly subsidence with a rate of -5 to -25 mm/yr and correlates well with the groundwater depletion trend. In contrast, the Trivandrum city situated ~ 170 km south, experienced land uplift with a rate of 0–10 mm/yr. We model future inundation scenarios for Kochi and Trivandrum regions using the vertical land motion estimations and a LIDAR based high resolution elevation model. We show that by 2100, the projected SLR and the VLM will increase the inundation risk for an area of ~ 24 km2 and 1.8 km2 for the coastal parts of the Kochi and Trivandrum, respectively. While the land subsidence at Kochi would cause an increase in inundation by ~ 21%, the land uplift at Trivandrum would cause a reduction in inundation by ~ 17%. The present study indicates the importance of local variability in vertical land motions for inundation hazard maps based on global projections of future sea-level rise.

Suggested Citation

  • Arpan Shastri & K. M. Sreejith & Ritesh Agrawal & B. S. Chaudhary, 2025. "Variability in vertical land motion along SW Indian coast: implications for inundation hazards due to sea-level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(7), pages 8159-8178, April.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-024-07102-1
    DOI: 10.1007/s11069-024-07102-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-07102-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-07102-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert J. Nicholls & Daniel Lincke & Jochen Hinkel & Sally Brown & Athanasios T. Vafeidis & Benoit Meyssignac & Susan E. Hanson & Jan-Ludolf Merkens & Jiayi Fang, 2021. "A global analysis of subsidence, relative sea-level change and coastal flood exposure," Nature Climate Change, Nature, vol. 11(4), pages 338-342, April.
    2. Kieran Bhatia & Alexander Baker & Wenchang Yang & Gabriel Vecchi & Thomas Knutson & Hiroyuki Murakami & James Kossin & Kevin Hodges & Keith Dixon & Benjamin Bronselaer & Carolyn Whitlock, 2022. "A potential explanation for the global increase in tropical cyclone rapid intensification," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Edward L. Webb & Daniel A. Friess & Ken W. Krauss & Donald R. Cahoon & Glenn R. Guntenspergen & Jacob Phelps, 2013. "A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise," Nature Climate Change, Nature, vol. 3(5), pages 458-465, May.
    4. Barbara Neumann & Athanasios T Vafeidis & Juliane Zimmermann & Robert J Nicholls, 2015. "Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-34, March.
    5. Arpan Shastri & K. M. Sreejith & M. S. Rose & Ritesh Agrawal & P. S. Sunil & S. Sunda & B. S. Chaudhary, 2023. "Two decades of land subsidence in Kolkata, India revealed by InSAR and GPS measurements: implications for groundwater management and seismic hazard assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2593-2607, September.
    6. Susan Hanson & Robert Nicholls & N. Ranger & S. Hallegatte & J. Corfee-Morlot & C. Herweijer & J. Chateau, 2011. "A global ranking of port cities with high exposure to climate extremes," Climatic Change, Springer, vol. 104(1), pages 89-111, January.
    7. Robert M. DeConto & David Pollard, 2016. "Contribution of Antarctica to past and future sea-level rise," Nature, Nature, vol. 531(7596), pages 591-597, March.
    8. Kieran Bhatia & Alexander Baker & Wenchang Yang & Gabriel Vecchi & Thomas Knutson & Hiroyuki Murakami & James Kossin & Kevin Hodges & Keith Dixon & Benjamin Bronselaer & Carolyn Whitlock, 2022. "Author Correction: A potential explanation for the global increase in tropical cyclone rapid intensification," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    9. Aysha Jennath & Saikat Paul, 2024. "A multi-risk approach for projecting climate change-associated coastal flood, applied to India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(5), pages 4581-4600, March.
    10. J. Shaji, 2014. "Coastal sensitivity assessment for Thiruvananthapuram, west coast of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1369-1392, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas David Pol & Jochen Hinkel, 2019. "Uncertainty representations of mean sea-level change: a telephone game?," Climatic Change, Springer, vol. 152(3), pages 393-411, March.
    2. Nicholas R. Golledge, 2020. "Long‐term projections of sea‐level rise from ice sheets," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    3. Yi Li & Youmin Tang & Shuai Wang & Ralf Toumi & Xiangzhou Song & Qiang Wang, 2023. "Recent increases in tropical cyclone rapid intensification events in global offshore regions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    5. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    6. R. Dean Hardy & Bryan L. Nuse, 2016. "Global sea-level rise: weighing country responsibility and risk," Climatic Change, Springer, vol. 137(3), pages 333-345, August.
    7. Perry C. Oddo & Ben S. Lee & Gregory G. Garner & Vivek Srikrishnan & Patrick M. Reed & Chris E. Forest & Klaus Keller, 2020. "Deep Uncertainties in Sea‐Level Rise and Storm Surge Projections: Implications for Coastal Flood Risk Management," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 153-168, January.
    8. Shouraseni Sen Roy & Tuhin Ghosh, 2024. "Local-level impacts of Cyclone Yaas on the Islands of the Indian Sundarbans Delta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3995-4010, March.
    9. Shoude Guan & Fei-Fei Jin & Jiwei Tian & I-I Lin & Iam-Fei Pun & Wei Zhao & John Huthnance & Zhao Xu & Wenju Cai & Zhao Jing & Lei Zhou & Ping Liu & Yihan Zhang & Zhiwei Zhang & Chun Zhou & Qingxuan Y, 2024. "Ocean internal tides suppress tropical cyclones in the South China Sea," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Anamaria Bukvic & Guillaume Rohat & Alex Apotsos & Alex de Sherbinin, 2020. "A Systematic Review of Coastal Vulnerability Mapping," Sustainability, MDPI, vol. 12(7), pages 1-26, April.
    11. Karine Bastos Leal & Luís Eduardo de Souza Robaina & André de Souza De Lima, 2022. "Coastal impacts of storm surges on a changing climate: a global bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1455-1476, November.
    12. Francesca Dal Cin & Martin Fleischmann & Ombretta Romice & João Pedro Costa, 2020. "Climate Adaptation Plans in the Context of Coastal Settlements: The Case of Portugal," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    13. Nabanita Sarkar & Angela Rizzo & Vittoria Vandelli & Mauro Soldati, 2022. "A Literature Review of Climate-Related Coastal Risks in the Mediterranean, a Climate Change Hotspot," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    14. Sok Kuh Kang & Sung-Hun Kim & I.-I. Lin & Young-Hyang Park & Yumi Choi & Isaac Ginis & Joseph Cione & Ji Yun Shin & Eun Jin Kim & Kyeong Ok Kim & Hyoun Woo Kang & Jae-Hyoung Park & Jean-Raymond Bidlot, 2024. "The North Equatorial Current and rapid intensification of super typhoons," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Anushka Narayanan & Karthik Balaguru & Wenwei Xu & L. Ruby Leung, 2024. "A new method for predicting hurricane rapid intensification based on co-occurring environmental parameters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(1), pages 881-899, January.
    16. Sally Brown & Katie Jenkins & Philip Goodwin & Daniel Lincke & Athanasios T. Vafeidis & Richard S. J. Tol & Rhosanna Jenkins & Rachel Warren & Robert J. Nicholls & Svetlana Jevrejeva & Agustin Sanchez, 2023. "Correction to: Global costs of protecting against sea-level rise at 1.5 to 4.0 °C," Climatic Change, Springer, vol. 176(4), pages 1-2, April.
    17. Leonard O. Ohenhen & Manoochehr Shirzaei & Chandrakanta Ojha & Matthew L. Kirwan, 2023. "Hidden vulnerability of US Atlantic coast to sea-level rise due to vertical land motion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Jan-Ludolf Merkens & Daniel Lincke & Jochen Hinkel & Sally Brown & Athanasios Thomas Vafeidis, 2018. "Regionalisation of population growth projections in coastal exposure analysis," Climatic Change, Springer, vol. 151(3), pages 413-426, December.
    19. Carlos F. Mena & Fátima L. Benitez & Carolina Sampedro & Patricia Martinez & Alex Quispe & Melinda Laituri, 2022. "Modeling Urban Growth and the Impacts of Climate Change: The Case of Esmeraldas City, Ecuador," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    20. Julia Caon Araujo & Fabio Ferreira Dias, 2021. "Multicriterial method of AHP analysis for the identification of coastal vulnerability regarding the rise of sea level: case study in Ilha Grande Bay, Rio de Janeiro, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 53-72, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-024-07102-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.