IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38742-9.html
   My bibliography  Save this article

Influence of El Niño on the variability of global shoreline position

Author

Listed:
  • Rafael Almar

    (LEGOS (Université de Toulouse/CNRS/IRD/UPS))

  • Julien Boucharel

    (LEGOS (Université de Toulouse/CNRS/IRD/UPS)
    Department of atmospheric sciences (University of Hawaii at Manoa))

  • Marcan Graffin

    (LEGOS (Université de Toulouse/CNRS/IRD/UPS))

  • Gregoire Ondoa Abessolo

    (University of Douala)

  • Gregoire Thoumyre

    (LEGOS (Université de Toulouse/CNRS/IRD/UPS))

  • Fabrice Papa

    (LEGOS (Université de Toulouse/CNRS/IRD/UPS)
    Universidade de Brasília (UnB), IRD, Instituto de Geociencias)

  • Roshanka Ranasinghe

    (IHE Delft Institute for Water Education
    Harbour. Coastal and Offshore Engineering, Deltares
    University of Twente)

  • Jennifer Montano

    (GET (Université de Toulouse/CNRS/IRD/UPS))

  • Erwin W. J. Bergsma

    (Earth Observation Lab, French Space Agency (CNES))

  • Mohamed Wassim Baba

    (Mohammed VI Polytechnic University (UM6P))

  • Fei-Fei Jin

    (Department of atmospheric sciences (University of Hawaii at Manoa))

Abstract

Coastal zones are fragile and complex dynamical systems that are increasingly under threat from the combined effects of anthropogenic pressure and climate change. Using global satellite derived shoreline positions from 1993 to 2019 and a variety of reanalysis products, here we show that shorelines are under the influence of three main drivers: sea-level, ocean waves and river discharge. While sea level directly affects coastal mobility, waves affect both erosion/accretion and total water levels, and rivers affect coastal sediment budgets and salinity-induced water levels. By deriving a conceptual global model that accounts for the influence of dominant modes of climate variability on these drivers, we show that interannual shoreline changes are largely driven by different ENSO regimes and their complex inter-basin teleconnections. Our results provide a new framework for understanding and predicting climate-induced coastal hazards.

Suggested Citation

  • Rafael Almar & Julien Boucharel & Marcan Graffin & Gregoire Ondoa Abessolo & Gregoire Thoumyre & Fabrice Papa & Roshanka Ranasinghe & Jennifer Montano & Erwin W. J. Bergsma & Mohamed Wassim Baba & Fei, 2023. "Influence of El Niño on the variability of global shoreline position," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38742-9
    DOI: 10.1038/s41467-023-38742-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38742-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38742-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roshanka Ranasinghe & Trang Minh Duong & Stefan Uhlenbrook & Dano Roelvink & Marcel Stive, 2013. "Climate-change impact assessment for inlet-interrupted coastlines," Nature Climate Change, Nature, vol. 3(1), pages 83-87, January.
    2. Angélique Melet & Benoit Meyssignac & Rafael Almar & Gonéri Le Cozannet, 2018. "Under-estimated wave contribution to coastal sea-level rise," Nature Climate Change, Nature, vol. 8(3), pages 234-239, March.
    3. Angélique Melet & Benoit Meyssignac & Rafael Almar & Gonéri Cozannet, 2018. "Author Correction: Under-estimated wave contribution to coastal sea-level rise," Nature Climate Change, Nature, vol. 8(9), pages 840-840, September.
    4. Oliver Floerl & Javier Atalah & Ana B. Bugnot & Mitchell Chandler & Katherine A. Dafforn & Lisa Floerl & Anastasija Zaiko & Robert Major, 2021. "A global model to forecast coastal hardening and mitigate associated socioecological risks," Nature Sustainability, Nature, vol. 4(12), pages 1060-1067, December.
    5. Théophile Bongarts Lebbe & Hélène Rey-Valette & Éric Chaumillon & Guigone Camus & Rafael Almar & Anny Cazenave & Joachim Claudet & Nicolas Rocle & Catherine Meur-Ferec & Frédérique Viard & Denis Merci, 2021. "Designing coastal adaptation strategies to tackle sea level rise," Post-Print hal-03412421, HAL.
    6. Stephen E. Darby & Christopher R. Hackney & Julian Leyland & Matti Kummu & Hannu Lauri & Daniel R. Parsons & James L. Best & Andrew P. Nicholas & Rolf Aalto, 2016. "Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity," Nature, Nature, vol. 539(7628), pages 276-279, November.
    7. Stijn Temmerman & Patrick Meire & Tjeerd J. Bouma & Peter M. J. Herman & Tom Ysebaert & Huib J. De Vriend, 2013. "Ecosystem-based coastal defence in the face of global change," Nature, Nature, vol. 504(7478), pages 79-83, December.
    8. Claudia Tebaldi & Roshanka Ranasinghe & Michalis Vousdoukas & D. J. Rasmussen & Ben Vega-Westhoff & Ebru Kirezci & Robert E. Kopp & Ryan Sriver & Lorenzo Mentaschi, 2021. "Extreme sea levels at different global warming levels," Nature Climate Change, Nature, vol. 11(9), pages 746-751, September.
    9. Xialong Ji & Andrew D. Gronewold & Houraa Daher & Richard B. Rood, 2019. "Modeling seasonal onset of coastal ice," Climatic Change, Springer, vol. 154(1), pages 125-141, May.
    10. Patrick L. Barnard & Daniel Hoover & David M. Hubbard & Alex Snyder & Bonnie C. Ludka & Jonathan Allan & George M. Kaminsky & Peter Ruggiero & Timu W. Gallien & Laura Gabel & Diana McCandless & Heathe, 2017. "Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    11. Marcello Passaro & Mark A. Hemer & Graham D. Quartly & Christian Schwatke & Denise Dettmering & Florian Seitz, 2021. "Global coastal attenuation of wind-waves observed with radar altimetry," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    12. Michalis I. Vousdoukas & Lorenzo Mentaschi & Evangelos Voukouvalas & Martin Verlaan & Svetlana Jevrejeva & Luke P. Jackson & Luc Feyen, 2018. "Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    13. Michalis I. Vousdoukas & Roshanka Ranasinghe & Lorenzo Mentaschi & Theocharis A. Plomaritis & Panagiotis Athanasiou & Arjen Luijendijk & Luc Feyen, 2020. "Sandy coastlines under threat of erosion," Nature Climate Change, Nature, vol. 10(3), pages 260-263, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    2. Alexandra Toimil & Iñigo J. Losada & Moisés Álvarez-Cuesta & Gonéri Cozannet, 2023. "Demonstrating the value of beaches for adaptation to future coastal flood risk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Rodolfo Silva & María Luisa Martínez & Brigitta I. van Tussenbroek & Laura Odette Guzmán-Rodríguez & Edgar Mendoza & Jorge López-Portillo, 2020. "A Framework to Manage Coastal Squeeze," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    4. Wayde C. Morse & Cody Cox & Christopher J. Anderson, 2020. "Using Public Participation Geographic Information Systems (PPGIS) to Identify Valued Landscapes Vulnerable to Sea Level Rise," Sustainability, MDPI, vol. 12(17), pages 1-34, August.
    5. Michalis I. Vousdoukas & Panagiotis Athanasiou & Alessio Giardino & Lorenzo Mentaschi & Alessandro Stocchino & Robert E. Kopp & Pelayo Menéndez & Michael W. Beck & Roshanka Ranasinghe & Luc Feyen, 2023. "Small Island Developing States under threat by rising seas even in a 1.5 °C warming world," Nature Sustainability, Nature, vol. 6(12), pages 1552-1564, December.
    6. L. Oosterhout & E. Koks & P. Beukering & S. Schep & T. Tiggeloven & S. Manen & M. Knaap & C. Duinmeijer & S. L. Buijs, 2023. "An Integrated Assessment of Climate Change Impacts and Implications on Bonaire," Economics of Disasters and Climate Change, Springer, vol. 7(2), pages 147-178, July.
    7. Lu, Yashun & Li, Guiqiang, 2023. "Potential application of electrical performance enhancement methods in PV/T module," Energy, Elsevier, vol. 281(C).
    8. Mukhtarov, Shahriyar & Yüksel, Serhat & Dinçer, Hasan, 2022. "The impact of financial development on renewable energy consumption: Evidence from Turkey," Renewable Energy, Elsevier, vol. 187(C), pages 169-176.
    9. Gerald Schernewski & Lars Niklas Voeckler & Leon Lambrecht & Esther Robbe & Johanna Schumacher, 2022. "Building with Nature—Ecosystem Service Assessment of Coastal-Protection Scenarios," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    10. Kai Yin & Sudong Xu & Quan Zhao & Nini Zhang & Mengqi Li, 2021. "Effects of sea surface warming and sea-level rise on tropical cyclone and inundation modeling at Shanghai coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 755-784, October.
    11. Sainan Cheng & Guohua Qu, 2023. "Research on the Effect of Digital Economy on Carbon Emissions under the Background of “Double Carbon”," IJERPH, MDPI, vol. 20(6), pages 1-27, March.
    12. Lam Thi Mai Huynh & Jie Su & Quanli Wang & Lindsay C. Stringer & Adam D. Switzer & Alexandros Gasparatos, 2024. "Meta-analysis indicates better climate adaptation and mitigation performance of hybrid engineering-natural coastal defence measures," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    14. Pérez-Maqueo, Octavio & Martínez, M. Luisa & Cóscatl Nahuacatl, Rosendo, 2017. "Is the protection of beach and dune vegetation compatible with tourism?," Tourism Management, Elsevier, vol. 58(C), pages 175-183.
    15. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    16. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    17. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    18. Rafael Almar & Julien Boucharel & Gregoire Ondoa Abessolo & Fabrice Papa & Erwin W. J. Bergsma, 2024. "Reply to: Coastal shoreline change assessments at global scales," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    19. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    20. Xue Zhong & Xiaohui Jiang & Leilei Li & Jing Xu & Huanyu Xu, 2020. "The Impact of Socio-Economic Factors on Sediment Load: A Case Study of the Yanhe River Watershed," Sustainability, MDPI, vol. 12(6), pages 1-18, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38742-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.