Understanding Braess’ Paradox in power grids
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-32917-6
Download full text from publisher
References listed on IDEAS
- Skinner Brian, 2010. "The Price of Anarchy in Basketball," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(1), pages 1-18, January.
- Bittihn, Stefan & Schadschneider, Andreas, 2018. "Braess paradox in a network with stochastic dynamics and fixed strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 133-152.
- Daniel J. Case & Yifan Liu & István Z. Kiss & Jean-Régis Angilella & Adilson E. Motter, 2019. "Braess’s paradox and programmable behaviour in microfluidic networks," Nature, Nature, vol. 574(7780), pages 647-652, October.
- Benjamin Schäfer & Dirk Witthaut & Marc Timme & Vito Latora, 2018. "Dynamically induced cascading failures in power grids," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
- Dirk Witthaut & Marc Timme, 2013. "Nonlocal failures in complex supply networks by single link additions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(9), pages 1-12, September.
- Peter Ashwin, 2003. "Synchronization from chaos," Nature, Nature, vol. 422(6930), pages 384-385, March.
- Shaukat, N. & Ali, S.M. & Mehmood, C.A. & Khan, B. & Jawad, M. & Farid, U. & Ullah, Z. & Anwar, S.M. & Majid, M., 2018. "A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1453-1475.
- Benjamin Schäfer & Dirk Witthaut & Marc Timme & Vito Latora, 2018. "Author Correction: Dynamically induced cascading failures in power grids," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
- Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
- Martin Robinius & Alexander Otto & Philipp Heuser & Lara Welder & Konstantinos Syranidis & David S. Ryberg & Thomas Grube & Peter Markewitz & Ralf Peters & Detlef Stolten, 2017. "Linking the Power and Transport Sectors—Part 1: The Principle of Sector Coupling," Energies, MDPI, vol. 10(7), pages 1-22, July.
- Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
- Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lee, Yongsun & Choi, Hoyun & Pagnier, Laurent & Kim, Cook Hyun & Lee, Jongshin & Jhun, Bukyoung & Kim, Heetae & Kurths, Jürgen & Kahng, B., 2024. "Reinforcement learning optimizes power dispatch in decentralized power grid," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
- Li, Qiang & Wu, Lu & Guan, Xinjia & Tian, Ze-jin, 2024. "Interplay of network topologies in aviation delay propagation: A complex network and machine learning analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
- Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019.
"Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
- Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," Renewable Energy, Elsevier, vol. 139(C), pages 80-101.
- Tom Brown & Mirko Schäfer & Martin Greiner, 2019. "Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System," Energies, MDPI, vol. 12(6), pages 1-16, March.
- Ortiz-Imedio, Rafael & Caglayan, Dilara Gulcin & Ortiz, Alfredo & Heinrichs, Heidi & Robinius, Martin & Stolten, Detlef & Ortiz, Inmaculada, 2021. "Power-to-Ships: Future electricity and hydrogen demands for shipping on the Atlantic coast of Europe in 2050," Energy, Elsevier, vol. 228(C).
- Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
- Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
- Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
- Neumann, Fabian & Hagenmeyer, Veit & Brown, Tom, 2022. "Assessments of linear power flow and transmission loss approximations in coordinated capacity expansion problems," Applied Energy, Elsevier, vol. 314(C).
- Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
- Els van der Roest & Stijn Beernink & Niels Hartog & Jan Peter van der Hoek & Martin Bloemendal, 2021. "Towards Sustainable Heat Supply with Decentralized Multi-Energy Systems by Integration of Subsurface Seasonal Heat Storage," Energies, MDPI, vol. 14(23), pages 1-31, November.
- Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021.
"Optimal supply chains and power sector benefits of green hydrogen,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
- Fabian Stockl & Wolf-Peter Schill & Alexander Zerrahn, 2020. "Optimal supply chains and power sector benefits of green hydrogen," Papers 2005.03464, arXiv.org, revised Jul 2021.
- Els van der Roest & Theo Fens & Martin Bloemendal & Stijn Beernink & Jan Peter van der Hoek & Ad J. M. van Wijk, 2021. "The Impact of System Integration on System Costs of a Neighborhood Energy and Water System," Energies, MDPI, vol. 14(9), pages 1-33, May.
- Ulf Philipp Müller & Birgit Schachler & Malte Scharf & Wolf-Dieter Bunke & Stephan Günther & Julian Bartels & Guido Pleßmann, 2019. "Integrated Techno-Economic Power System Planning of Transmission and Distribution Grids," Energies, MDPI, vol. 12(11), pages 1-30, May.
- Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
- Jasmine Ramsebner & Reinhard Haas & Amela Ajanovic & Martin Wietschel, 2021. "The sector coupling concept: A critical review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
- Hao Wu & Xiangyi Meng & Michael M. Danziger & Sean P. Cornelius & Hui Tian & Albert-László Barabási, 2022. "Fragmentation of outage clusters during the recovery of power distribution grids," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
- Rémi Delage & Taichi Matsuoka & Toshihiko Nakata, 2021. "Spatial–Temporal Estimation and Analysis of Japan Onshore and Offshore Wind Energy Potential," Energies, MDPI, vol. 14(8), pages 1-12, April.
- Reichenberg, Lina & Hedenus, Fredrik & Mattsson, Niclas & Verendel, Vilhelm, 2022. "Deep decarbonization and the supergrid – Prospects for electricity transmission between Europe and China," Energy, Elsevier, vol. 239(PE).
- Fabian Stöckl & Alexander Zerrahn, 2023.
"Substituting Clean for Dirty Energy: A Bottom-Up Analysis,"
Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(3), pages 819-863.
- Fabian Stöckl & Alexander Zerrahn, 2020. "Substituting Clean for Dirty Energy: A Bottom-Up Analysis," Discussion Papers of DIW Berlin 1885, DIW Berlin, German Institute for Economic Research.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32917-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.