IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35104-9.html
   My bibliography  Save this article

Fragmentation of outage clusters during the recovery of power distribution grids

Author

Listed:
  • Hao Wu

    (State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications
    Northeastern University)

  • Xiangyi Meng

    (Northeastern University)

  • Michael M. Danziger

    (Northeastern University)

  • Sean P. Cornelius

    (Ryerson University)

  • Hui Tian

    (State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications)

  • Albert-László Barabási

    (Northeastern University)

Abstract

The understanding of recovery processes in power distribution grids is limited by the lack of realistic outage data, especially large-scale blackout datasets. By analyzing data from three electrical companies across the United States, we find that the recovery duration of an outage is connected with the downtime of its nearby outages and blackout intensity (defined as the peak number of outages during a blackout), but is independent of the number of customers affected. We present a cluster-based recovery framework to analytically characterize the dependence between outages, and interpret the dominant role blackout intensity plays in recovery. The recovery of blackouts is not random and has a universal pattern that is independent of the disruption cause, the post-disaster network structure, and the detailed repair strategy. Our study reveals that suppressing blackout intensity is a promising way to speed up restoration.

Suggested Citation

  • Hao Wu & Xiangyi Meng & Michael M. Danziger & Sean P. Cornelius & Hui Tian & Albert-László Barabási, 2022. "Fragmentation of outage clusters during the recovery of power distribution grids," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35104-9
    DOI: 10.1038/s41467-022-35104-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35104-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35104-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Ginot & I. Theurkauff & F. Detcheverry & C. Ybert & C. Cottin-Bizonne, 2018. "Aggregation-fragmentation and individual dynamics of active clusters," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Massoud Amin, 2013. "The smart-grid solution," Nature, Nature, vol. 499(7457), pages 145-147, July.
    3. Kate Anderson, 2020. "When the lights go out," Nature Energy, Nature, vol. 5(3), pages 189-190, March.
    4. Zhao-Hua Lin & Mi Feng & Ming Tang & Zonghua Liu & Chen Xu & Pak Ming Hui & Ying-Cheng Lai, 2020. "Non-Markovian recovery makes complex networks more resilient against large-scale failures," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    5. Roshanak Nateghi & Seth D. Guikema & Steven M. Quiring, 2011. "Comparison and Validation of Statistical Methods for Predicting Power Outage Durations in the Event of Hurricanes," Risk Analysis, John Wiley & Sons, vol. 31(12), pages 1897-1906, December.
    6. Jichang Zhao & Daqing Li & Hillel Sanhedrai & Reuven Cohen & Shlomo Havlin, 2016. "Spatio-temporal propagation of cascading overload failures in spatially embedded networks," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
    7. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    8. Chuanyi Ji & Yun Wei & Henry Mei & Jorge Calzada & Matthew Carey & Steve Church & Timothy Hayes & Brian Nugent & Gregory Stella & Matthew Wallace & Joe White & Robert Wilcox, 2016. "Large-scale data analysis of power grid resilience across multiple US service regions," Nature Energy, Nature, vol. 1(5), pages 1-8, May.
    9. Benjamin Schäfer & Dirk Witthaut & Marc Timme & Vito Latora, 2018. "Dynamically induced cascading failures in power grids," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    10. Benjamin Schäfer & Dirk Witthaut & Marc Timme & Vito Latora, 2018. "Author Correction: Dynamically induced cascading failures in power grids," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    11. Michael M. Danziger & Albert-László Barabási, 2022. "Recovery coupling in multilayer networks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Junyi & Liu, Ying & Tang, Ming & Guan, Shuguang, 2022. "Identification of the most influential stocks in financial networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Rachunok, Benjamin & Nateghi, Roshanak, 2020. "The sensitivity of electric power infrastructure resilience to the spatial distribution of disaster impacts," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Zhang, Kaimin & Bai, Libiao & Xie, Xiaoyan & Wang, Chenshuo, 2023. "Modeling of risk cascading propagation in project portfolio network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    5. Frasca, Mattia & Gambuzza, Lucia Valentina, 2021. "Control of cascading failures in dynamical models of power grids," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Pei, Jianxin & Liu, Ying & Wang, Wei & Gong, Jie, 2021. "Cascading failures in multiplex network under flow redistribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    7. Zhu, Yanpeng & Chen, Lei & Jia, Chun-Xiao & Meng, Fanyuan & Liu, Run-Ran, 2023. "Non-Markovian node fragility in cascading failures on random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    8. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    9. Zhong, Jilong & Zhang, FengMing & Yang, Shunkun & Li, Daqing, 2019. "Restoration of interdependent network against cascading overload failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 884-891.
    10. Liang, Yuan & Qi, Mingze & Huangpeng, Qizi & Duan, Xiaojun, 2023. "Percolation of interlayer feature-correlated multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    11. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    12. Kairui Feng & Min Ouyang & Ning Lin, 2022. "Tropical cyclone-blackout-heatwave compound hazard resilience in a changing climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    14. Shi, Xiaoqiu & Long, Wei & Li, Yanyan & Deng, Dingshan, 2022. "Robustness of interdependent supply chain networks against both functional and structural cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    15. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.
    16. Benjamin Schäfer & Thiemo Pesch & Debsankha Manik & Julian Gollenstede & Guosong Lin & Hans-Peter Beck & Dirk Witthaut & Marc Timme, 2022. "Understanding Braess’ Paradox in power grids," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Gharebaghi, Sina & Chaudhuri, Nilanjan Ray & He, Ting & La Porta, Thomas, 2023. "An approach for fast cascading failure simulation in dynamic models of power systems," Applied Energy, Elsevier, vol. 332(C).
    18. Tian, Meng & Dong, Zhengcheng & Cui, Mingjian & Wang, Jianhui & Wang, Xianpei & Zhao, Le, 2019. "Energy-supported cascading failure model on interdependent networks considering control nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 195-204.
    19. Wang, Jing & Zuo, Wangda & Rhode-Barbarigos, Landolf & Lu, Xing & Wang, Jianhui & Lin, Yanling, 2019. "Literature review on modeling and simulation of energy infrastructures from a resilience perspective," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 360-373.
    20. Lucas Böttcher & Nino Antulov-Fantulin & Thomas Asikis, 2022. "AI Pontryagin or how artificial neural networks learn to control dynamical systems," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35104-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.