IDEAS home Printed from https://ideas.repec.org/a/kap/theord/v84y2018i3d10.1007_s11238-017-9623-y.html
   My bibliography  Save this article

The role of information search and its influence on risk preferences

Author

Listed:
  • Orestis Kopsacheilis

    () (University of Nottingham)

Abstract

Abstract According to the ‘Description–Experience gap’ (DE gap), when people are provided with the descriptions of risky prospects they make choices as if they overweight the probability of rare events; but when making decisions from experience after exploring the prospects’ properties, they behave as if they underweight such probability. This study revisits this discrepancy while focusing on information-search in decisions from experience. We report findings from a lab-experiment with three treatments: a standard version of decisions from description and two versions of decisions from experience: with and without a ‘history table’ recording previously sampled events. We find that people sample more from lotteries with rarer events. The history table proved influential; in its absence search is more responsive to cues such as a lottery’s variance while in its presence the cue that stands out is the table’s maximum capacity. Our analysis of risky choices captures a significant DE gap which is mitigated by the presence of the history table. We elicit probability weighting functions at the individual level and report that subjects overweight rare events in experience but less so than in description. Finally, we report a measure that allows us to compare the type of DE gap found in studies using choice patterns with that inferred through valuation and find that the phenomenon is similar but not identical across the two methods.

Suggested Citation

  • Orestis Kopsacheilis, 2018. "The role of information search and its influence on risk preferences," Theory and Decision, Springer, vol. 84(3), pages 311-339, May.
  • Handle: RePEc:kap:theord:v:84:y:2018:i:3:d:10.1007_s11238-017-9623-y
    DOI: 10.1007/s11238-017-9623-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11238-017-9623-y
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adam Booij & Bernard Praag & Gijs Kuilen, 2010. "A parametric analysis of prospect theory’s functionals for the general population," Theory and Decision, Springer, vol. 68(1), pages 115-148, February.
    2. Mohammed Abdellaoui & Olivier L'Haridon & Corina Paraschiv, 2011. "Experienced vs. Described Uncertainty: Do We Need Two Prospect Theory Specifications?," Management Science, INFORMS, vol. 57(10), pages 1879-1895, October.
    3. Mohammed Abdellaoui & Aurelien Baillon & Laetitia Placido & Peter P. Wakker, 2011. "The Rich Domain of Uncertainty: Source Functions and Their Experimental Implementation," American Economic Review, American Economic Association, vol. 101(2), pages 695-723, April.
    4. Craig R. Fox & Liat Hadar, 2006. ""Decisions from experience" = sampling error + prospect theory: Reconsidering Hertwig, Barron, Weber & Erev (2004)," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 1, pages 159-161, November.
    5. Mohammed Abdellaoui & Han Bleichrodt & Olivier L’Haridon, 2008. "A tractable method to measure utility and loss aversion under prospect theory," Journal of Risk and Uncertainty, Springer, vol. 36(3), pages 245-266, June.
    6. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    7. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    8. Thomas Epper & Helga Fehr-Duda & Adrian Bruhin, 2011. "Viewing the future through a warped lens: Why uncertainty generates hyperbolic discounting," Journal of Risk and Uncertainty, Springer, vol. 43(3), pages 169-203, December.
    9. André Palma & Mohammed Abdellaoui & Giuseppe Attanasi & Moshe Ben-Akiva & Ido Erev & Helga Fehr-Duda & Dennis Fok & Craig Fox & Ralph Hertwig & Nathalie Picard & Peter Wakker & Joan Walker & Martin We, 2014. "Beware of black swans: Taking stock of the description–experience gap in decision under uncertainty," Marketing Letters, Springer, vol. 25(3), pages 269-280, September.
    10. Ido Erev & Ira Glozman & Ralph Hertwig, 2008. "What impacts the impact of rare events," Journal of Risk and Uncertainty, Springer, vol. 36(2), pages 153-177, April.
    11. Mohammed Abdellaoui & Laetitia Placido & Aurélien Baillon & P.P. Wakker, 2011. "The Rich Domain of Uncertainty: Source Functions and Their Experimental Implementation," Post-Print hal-00609214, HAL.
    12. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, Oxford University Press, vol. 75(4), pages 643-669.
    13. Urs Fischbacher, 2007. "z-Tree: Zurich toolbox for ready-made economic experiments," Experimental Economics, Springer;Economic Science Association, vol. 10(2), pages 171-178, June.
    14. Zahra Murad & Martin Sefton & Chris Starmer, 2016. "How do risk attitudes affect measured confidence?," Journal of Risk and Uncertainty, Springer, vol. 52(1), pages 21-46, February.
    15. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    16. Greiner, Ben, 2004. "An Online Recruitment System for Economic Experiments," MPRA Paper 13513, University Library of Munich, Germany.
    17. Nicholas C. Barberis, 2013. "Thirty Years of Prospect Theory in Economics: A Review and Assessment," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 173-196, Winter.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:84:y:2018:i:3:d:10.1007_s11238-017-9623-y. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.