IDEAS home Printed from
   My bibliography  Save this article

Mixed Route Strategies for the Risk-Averse Shipment of Hazardous Materials


  • Michael Bell



Previous work on the risk-averse routing of hazardous materials has focussed on ways of finding the safest route between a pair of points. For repeated shipments where the arc incident probabilities are unknown, it is shown that the safest strategy is in general to use a mix of routes. Starting with a simple two-route example, it is shown that exposure can be significantly reduced by sharing shipments between routes. In order to determine the safest set of routes and the safest share of traffic between these routes, a minmax problem is formulated. The properties of the optimality conditions are explored. A simple solution heuristic based on a shortest path algorithm and the method of successive averages is proposed. Connections to game theory provide useful insights into the nature of the solution. Copyright Springer Science + Business Media, LLC 2006

Suggested Citation

  • Michael Bell, 2006. "Mixed Route Strategies for the Risk-Averse Shipment of Hazardous Materials," Networks and Spatial Economics, Springer, vol. 6(3), pages 253-265, September.
  • Handle: RePEc:kap:netspa:v:6:y:2006:i:3:p:253-265 DOI: 10.1007/s11067-006-9283-x

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Zhang, Lei & Levinson, David, 2010. "Ramp metering and freeway bottleneck capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 218-235, May.
    2. Ahn, Soyoung & Cassidy, Michael J. & Laval, Jorge, 2004. "Verification of a simplified car-following theory," Transportation Research Part B: Methodological, Elsevier, vol. 38(5), pages 431-440, June.
    3. Kim, T. & Zhang, H.M., 2008. "A stochastic wave propagation model," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 619-634, August.
    4. Chiabaut, Nicolas & Leclercq, Ludovic & Buisson, Christine, 2010. "From heterogeneous drivers to macroscopic patterns in congestion," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 299-308, February.
    5. D. Helbing & M. Treiber & A. Kesting & M. Schönhof, 2009. "Theoretical vs. empirical classification and prediction of congested traffic states," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 69(4), pages 583-598, June.
    6. Kerner, Boris S. & Klenov, Sergey L., 2006. "Probabilistic breakdown phenomenon at on-ramp bottlenecks in three-phase traffic theory: Congestion nucleation in spatially non-homogeneous traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 473-492.
    7. Laval, Jorge A., 2011. "Hysteresis in traffic flow revisited: An improved measurement method," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 385-391, February.
    8. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Reniers, G.L.L. & Dullaert, W., 2013. "A method to assess multi-modal Hazmat transport security vulnerabilities: Hazmat transport SVA," Transport Policy, Elsevier, vol. 28(C), pages 103-113.
    2. Fang, Kan & Ke, Ginger Y. & Verma, Manish, 2017. "A routing and scheduling approach to rail transportation of hazardous materials with demand due dates," European Journal of Operational Research, Elsevier, vol. 261(1), pages 154-168.
    3. Paul Berglund & Changhyun Kwon, 2014. "Robust Facility Location Problem for Hazardous Waste Transportation," Networks and Spatial Economics, Springer, vol. 14(1), pages 91-116, March.
    4. Zvi Drezner & George Wesolowsky, 2014. "Covering Part of a Planar Network," Networks and Spatial Economics, Springer, vol. 14(3), pages 629-646, December.
    5. repec:eee:ejores:v:264:y:2018:i:1:p:225-238 is not listed on IDEAS
    6. N. Norouzi & R. Tavakkoli-Moghaddam & M. Ghazanfari & M. Alinaghian & A. Salamatbakhsh, 2012. "A New Multi-objective Competitive Open Vehicle Routing Problem Solved by Particle Swarm Optimization," Networks and Spatial Economics, Springer, vol. 12(4), pages 609-633, December.
    7. Kuhn, K. & Raith, A. & Schmidt, M. & Schöbel, A., 2016. "Bi-objective robust optimisation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 418-431.
    8. Szeto, W.Y. & Farahani, R.Z. & Sumalee, Agachai, 2017. "Link-based multi-class hazmat routing-scheduling problem: A multiple demon approach," European Journal of Operational Research, Elsevier, vol. 261(1), pages 337-354.
    9. repec:kap:netspa:v:17:y:2017:i:3:d:10.1007_s11067-017-9344-3 is not listed on IDEAS
    10. Rahman, Ashrafur & Fiondella, Lance & Lownes, Nicholas E., 2014. "A Bi-Objective Approach to Evaluate Highway Routing and Regulatory Strategies for Hazardous Materials Transportation," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 53(1).

    More about this item


    Network reliability; Hazmats; Uncertainty;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:6:y:2006:i:3:p:253-265. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.