IDEAS home Printed from
   My bibliography  Save this article

A New Multi-objective Competitive Open Vehicle Routing Problem Solved by Particle Swarm Optimization


  • N. Norouzi
  • R. Tavakkoli-Moghaddam


  • M. Ghazanfari
  • M. Alinaghian
  • A. Salamatbakhsh


This paper presents a new variant of an open vehicle routing problem (OVRP), in which competition exists between distributors. In the OVRP with competitive time windows (OVRPCTW), the reaching time to customers affects the sales amount. Therefore, distributors intend to service customers earlier than rivals, to obtain the maximum sales. Moreover, a part of a driver’s benefit is related to the amount of sales; thus, the balance of goods carried in each vehicle is important in view of the limited vehicle capacities. In this paper, a new, multi-objective mathematical model of the homogeneous and competitive OVRP is presented, to minimize the travel cost of routes and to maximize the obtained sales while concurrently balancing the goods distributed among vehicles. This model is solved by the use of a multi-objective particle swarm optimization (MOPSO) algorithm, and the related results are compared with the results of NSGA-II, which is a well-known multi-objective evolutionary algorithm. A comparison of our results with three performance metrics confirms that the proposed MOPSO is an efficient algorithm for solving the competitive OVRP with a reasonable computational time and cost. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • N. Norouzi & R. Tavakkoli-Moghaddam & M. Ghazanfari & M. Alinaghian & A. Salamatbakhsh, 2012. "A New Multi-objective Competitive Open Vehicle Routing Problem Solved by Particle Swarm Optimization," Networks and Spatial Economics, Springer, vol. 12(4), pages 609-633, December.
  • Handle: RePEc:kap:netspa:v:12:y:2012:i:4:p:609-633
    DOI: 10.1007/s11067-011-9169-4

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Brandao, Jose, 2004. "A tabu search algorithm for the open vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 157(3), pages 552-564, September.
    2. Jozefowiez, Nicolas & Semet, Frédéric & Talbi, El-Ghazali, 2009. "An evolutionary algorithm for the vehicle routing problem with route balancing," European Journal of Operational Research, Elsevier, vol. 195(3), pages 761-769, June.
    3. Qureshi, A.G. & Taniguchi, E. & Yamada, T., 2009. "An exact solution approach for vehicle routing and scheduling problems with soft time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(6), pages 960-977, November.
    4. Michael Bell, 2006. "Mixed Route Strategies for the Risk-Averse Shipment of Hazardous Materials," Networks and Spatial Economics, Springer, vol. 6(3), pages 253-265, September.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:12:y:2012:i:4:p:609-633. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.