IDEAS home Printed from
   My bibliography  Save this article

Estimation of cost inefficiency in panel data models with firm specific and sub-company specific effects


  • Andrew Smith


  • Phill Wheat



No abstract is available for this item.

Suggested Citation

  • Andrew Smith & Phill Wheat, 2012. "Estimation of cost inefficiency in panel data models with firm specific and sub-company specific effects," Journal of Productivity Analysis, Springer, vol. 37(1), pages 27-40, February.
  • Handle: RePEc:kap:jproda:v:37:y:2012:i:1:p:27-40
    DOI: 10.1007/s11123-011-0220-8

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Kumbhakar, Subal C., 1991. "Estimation of technical inefficiency in panel data models with firm- and time-specific effects," Economics Letters, Elsevier, vol. 36(1), pages 43-48, May.
    2. Andreas Andrikopoulos & John Loizides, 1998. "Cost structure and productivity growth in European railway systems," Applied Economics, Taylor & Francis Journals, vol. 30(12), pages 1625-1639.
    3. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 239-253.
    4. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    5. Lancaster, Tony, 2000. "The incidental parameter problem since 1948," Journal of Econometrics, Elsevier, vol. 95(2), pages 391-413, April.
    6. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    7. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    8. Johansson, Per & Nilsson, Jan-Eric, 2004. "An economic analysis of track maintenance costs," Transport Policy, Elsevier, vol. 11(3), pages 277-286, July.
    9. Moulton, Brent R & Randolph, William C, 1989. "Alternative Tests of the Error Components Model," Econometrica, Econometric Society, vol. 57(3), pages 685-693, May.
    10. Luis Orea & Subal C. Kumbhakar, 2004. "Efficiency measurement using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 29(1), pages 169-183, January.
    11. Link, Heike & Nilsson, Jan-Eric, 2005. "Infrastructure," Research in Transportation Economics, Elsevier, vol. 14(1), pages 49-83, January.
    12. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    13. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    14. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Gillies-Smith, Andrew & Wheat, Phill, 2016. "Do network industries plan to eliminate inefficiencies in response to regulatory pressure? The case of railways in Great Britain," Utilities Policy, Elsevier, vol. 43(PB), pages 165-173.
    2. repec:eee:trapol:v:59:y:2017:i:c:p:46-53 is not listed on IDEAS

    More about this item


    Stochastic frontier model; Efficiency; Sub-company data; Panel data; C23; C81; L51; D24;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:37:y:2012:i:1:p:27-40. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.