IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i3d10.1007_s10614-024-10610-8.html
   My bibliography  Save this article

Greymodels: A Shiny Package for Grey Forecasting Models in R

Author

Listed:
  • Havisha Jahajeeah

    (University of Technology)

  • Aslam A. E. F. Saib

    (University of Technology)

Abstract

The Greymodels package presents an interactive interface in R for the statistical modelling and forecasting of incomplete or small datasets using grey models. The package, based on the Shiny framework, has been designed to work with univariate and multivariate datasets having different properties and characteristics. The functionality of the package is demonstrated with a few examples and in particular, the user-friendly interface is shown to allow users to easily compare the performance of different models for prediction and among others, visualize graphical plots of predicted values within a user chosen confidence interval. The built-in algorithms in the Greymodels package are extensions or hybrids of the GM $$(1,\,1)$$ ( 1 , 1 ) model, and this article covers an overview of the theoretical background of the basic grey model and we also propose a PSO-GM $$(1,\,1)$$ ( 1 , 1 ) algorithm in this package.

Suggested Citation

  • Havisha Jahajeeah & Aslam A. E. F. Saib, 2025. "Greymodels: A Shiny Package for Grey Forecasting Models in R," Computational Economics, Springer;Society for Computational Economics, vol. 65(3), pages 1549-1565, March.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:3:d:10.1007_s10614-024-10610-8
    DOI: 10.1007/s10614-024-10610-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10610-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10610-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xuemei Li & Ya Zhang & Kedong Yin, 2018. "A new grey relational model based on discrete Fourier transform and its application on Chinese marine economic," Marine Economics and Management, Emerald Group Publishing Limited, vol. 1(1), pages 79-100, July.
    2. Tuncay Özcan & Fatih Tüysüz, 2018. "Healthcare Expenditure Prediction in Turkey by Using Genetic Algorithm Based Grey Forecasting Models," International Series in Operations Research & Management Science, in: Cengiz Kahraman & Y. Ilker Topcu (ed.), Operations Research Applications in Health Care Management, chapter 0, pages 159-190, Springer.
    3. Li, Shoujun & Miao, Yanzi & Li, Guangyu & Ikram, Muhammad, 2020. "A novel varistructure grey forecasting model with speed adaptation and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 45-70.
    4. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "A trigonometric grey prediction approach to forecasting electricity demand," Energy, Elsevier, vol. 31(14), pages 2839-2847.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meixia Wang, 2024. "Predicting China’s Energy Consumption and CO 2 Emissions by Employing a Novel Grey Model," Energies, MDPI, vol. 17(21), pages 1-25, October.
    2. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    4. Chang, Che-Jung & Li, Der-Chiang & Huang, Yi-Hsiang & Chen, Chien-Chih, 2015. "A novel gray forecasting model based on the box plot for small manufacturing data sets," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 400-408.
    5. Ene, Seval & Öztürk, Nursel, 2017. "Grey modelling based forecasting system for return flow of end-of-life vehicles," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 155-166.
    6. Wang, Yuanyuan & Wang, Jianzhou & Zhao, Ge & Dong, Yao, 2012. "Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China," Energy Policy, Elsevier, vol. 48(C), pages 284-294.
    7. Zhao, Ze & Wang, Jianzhou & Zhao, Jing & Su, Zhongyue, 2012. "Using a Grey model optimized by Differential Evolution algorithm to forecast the per capita annual net income of rural households in China," Omega, Elsevier, vol. 40(5), pages 525-532.
    8. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    9. OA Carboni & P. Russu, 2014. "Measuring Environmental and Economic Efficiency in Italy: an Application of the Malmquist-DEA and Grey Forecasting Model," Working Paper CRENoS 201401, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    10. Zeng, Chunlei & Wu, Changchun & Zuo, Lili & Zhang, Bin & Hu, Xingqiao, 2014. "Predicting energy consumption of multiproduct pipeline using artificial neural networks," Energy, Elsevier, vol. 66(C), pages 791-798.
    11. Goutam Dutta & Krishnendranath Mitra, 2017. "A literature review on dynamic pricing of electricity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1131-1145, October.
    12. Pao, Hsiao-Tien, 2009. "Forecast of electricity consumption and economic growth in Taiwan by state space modeling," Energy, Elsevier, vol. 34(11), pages 1779-1791.
    13. Weide Li & Demeng Kong & Jinran Wu, 2017. "A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting," Energies, MDPI, vol. 10(5), pages 1-16, May.
    14. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    15. An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
    16. Carlo Andrea Bollino & Francesco Asdrubali & Paolo Polinori & Simona Bigerna & Silvia Micheli & Claudia Guattari & Antonella Rotili, 2017. "A Note on Medium- and Long-Term Global Energy Prospects and Scenarios," Sustainability, MDPI, vol. 9(5), pages 1-25, May.
    17. Chen, Ho-Wen & Yu, Ruey-Fang & Ning, Shu-Kuang & Huang, Hsin-Chih, 2010. "Forecasting effluent quality of an industry wastewater treatment plant by evolutionary grey dynamic model," Resources, Conservation & Recycling, Elsevier, vol. 54(4), pages 235-241.
    18. Wu, Lifeng & Liu, Sifeng & Liu, Dinglin & Fang, Zhigeng & Xu, Haiyan, 2015. "Modelling and forecasting CO2 emissions in the BRICS (Brazil, Russia, India, China, and South Africa) countries using a novel multi-variable grey model," Energy, Elsevier, vol. 79(C), pages 489-495.
    19. Cinar, Didem & Kayakutlu, Gulgun & Daim, Tugrul, 2010. "Development of future energy scenarios with intelligent algorithms: Case of hydro in Turkey," Energy, Elsevier, vol. 35(4), pages 1724-1729.
    20. Huang, Lizhen & Bohne, Rolf André & Lohne, Jardar, 2015. "Shelter and residential building energy consumption within the 450 ppm CO2eq constraints in different climate zones," Energy, Elsevier, vol. 90(P1), pages 965-979.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:3:d:10.1007_s10614-024-10610-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.