IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v59y2022i2d10.1007_s10614-021-10115-8.html
   My bibliography  Save this article

A New Strategy for Short-Term Stock Investment Using Bayesian Approach

Author

Listed:
  • Tai Vo-Van

    (Can Tho University)

  • Ha Che-Ngoc

    (Ton Duc Thang University
    Ton Duc Thang University)

  • Nghiep Le-Dai

    (Nam Can Tho University)

  • Thao Nguyen-Trang

    (Ton Duc Thang University
    Ton Duc Thang University)

Abstract

In this paper, an application of the Bayesian classifier for short-term stock trend prediction is presented. In order to use Bayesian classifier effectively, we transform the daily stock price time series object into a data frame format where the dependent variable is the stock trend label and the independent variables are the stock variations of the last few days. Based on the posterior probability density function, we propose a new method for stock selection and then propose a new stock trading strategy. The numerical examples demonstrate the potential of the proposed strategy for application to short-term stock trading.

Suggested Citation

  • Tai Vo-Van & Ha Che-Ngoc & Nghiep Le-Dai & Thao Nguyen-Trang, 2022. "A New Strategy for Short-Term Stock Investment Using Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 887-911, February.
  • Handle: RePEc:kap:compec:v:59:y:2022:i:2:d:10.1007_s10614-021-10115-8
    DOI: 10.1007/s10614-021-10115-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-021-10115-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-021-10115-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rohnn Sanderson & Nancy L. Lumpkin-Sowers, 2018. "Buy and Hold in the New Age of Stock Market Volatility: A Story about ETFs," IJFS, MDPI, vol. 6(3), pages 1-14, September.
    2. J. Wiesinger & D. Sornette & J. Satinover, 2013. "Reverse Engineering Financial Markets with Majority and Minority Games Using Genetic Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 41(4), pages 475-492, April.
    3. Roscoe, Philip & Howorth, Carole, 2009. "Identification through technical analysis: A study of charting and UK non-professional investors," Accounting, Organizations and Society, Elsevier, vol. 34(2), pages 206-221, February.
    4. George S. Atsalakis & Eftychios E. Protopapadakis & Kimon P. Valavanis, 2016. "Stock trend forecasting in turbulent market periods using neuro-fuzzy systems," Operational Research, Springer, vol. 16(2), pages 245-269, July.
    5. Xinyi Li & Yinchuan Li & Xiao-Yang Liu & Christina Dan Wang, 2019. "Risk Management via Anomaly Circumvent: Mnemonic Deep Learning for Midterm Stock Prediction," Papers 1908.01112, arXiv.org.
    6. Huarng, Kunhuang & Yu, Hui-Kuang, 2005. "A Type 2 fuzzy time series model for stock index forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 445-462.
    7. Robert Sollis & Paul Newbold & Stephen Leybourne, 2000. "Stochastic unit roots modelling of stock price indices," Applied Financial Economics, Taylor & Francis Journals, vol. 10(3), pages 311-315.
    8. Thao Nguyen-Trang & Tai Vo-Van, 2017. "A new approach for determining the prior probabilities in the classification problem by Bayesian method," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 629-643, September.
    9. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    10. Zhou, Zhongbao & Jin, Qianying & Xiao, Helu & Wu, Qian & Liu, Wenbin, 2018. "Estimation of cardinality constrained portfolio efficiency via segmented DEA," Omega, Elsevier, vol. 76(C), pages 28-37.
    11. Shangkun Deng & Kazuki Yoshiyama & Takashi Mitsubuchi & Akito Sakurai, 2015. "Hybrid Method of Multiple Kernel Learning and Genetic Algorithm for Forecasting Short-Term Foreign Exchange Rates," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 49-89, January.
    12. Pätäri, Eero & Karell, Ville & Luukka, Pasi & Yeomans, Julian S, 2018. "Comparison of the multicriteria decision-making methods for equity portfolio selection: The U.S. evidence," European Journal of Operational Research, Elsevier, vol. 265(2), pages 655-672.
    13. Jimmy E. Hilliard & Jitka Hilliard, 2018. "Rebalancing versus buy and hold: theory, simulation and empirical analysis," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 1-32, January.
    14. Zhi Liu & Tie Zhang, 2019. "A second-order fuzzy time series model for stock price analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(14), pages 2514-2526, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ha Che-Ngoc & Nga Do-Thi & Thao Nguyen-Trang, 2023. "Profitability of Ichimoku-Based Trading Rule in Vietnam Stock Market in the Context of the COVID-19 Outbreak," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1781-1799, December.
    2. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    3. Yi-Fang Liu & Wei Zhang & Chao Xu & Jørgen Vitting Andersen & Hai-Chuan Xu, 2014. "Impact of information cost and switching of trading strategies in an artificial stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01011701, HAL.
    4. Klein, A. & Urbig, D. & Kirn, S., 2008. "Who Drives the Market? Estimating a Heterogeneous Agent-based Financial Market Model Using a Neural Network Approach," MPRA Paper 14433, University Library of Munich, Germany.
    5. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
    6. Chen, Tai-Liang & Cheng, Ching-Hsue & Jong Teoh, Hia, 2007. "Fuzzy time-series based on Fibonacci sequence for stock price forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 377-390.
    7. Liu, Yi-Fang & Zhang, Wei & Xu, Chao & Vitting Andersen, Jørgen & Xu, Hai-Chuan, 2014. "Impact of information cost and switching of trading strategies in an artificial stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 204-215.
    8. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    9. Vygintas Gontis & Aleksejus Kononovicius & Stefan Reimann, 2012. "The class of nonlinear stochastic models as a background for the bursty behavior in financial markets," Papers 1201.3083, arXiv.org, revised May 2012.
    10. Barde, Sylvain, 2020. "Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    11. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    12. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    13. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2010. "Behavioral heterogeneity in the option market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2273-2287, November.
    14. Tedeschi, Gabriele & Recchioni, Maria Cristina & Berardi, Simone, 2019. "An approach to identifying micro behavior: How banks’ strategies influence financial cycles," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 329-346.
    15. Tiziana Assenza & William A. Brock & Cars H. Hommes, 2013. "Animal Spirits, Heterogeneous Expectations and the Emergence of Booms and Busts," Tinbergen Institute Discussion Papers 13-205/II, Tinbergen Institute.
    16. Yi-Fang Liu & Wei Zhang & Chao Xu & Jørgen Vitting Andersen & Hai-Chuan Xu, 2014. "Impact of information cost and switching of trading strategies in an artificial stock market," Post-Print halshs-00983051, HAL.
    17. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    18. Xiong, Hang & Payne, Diane & Kinsella, Stephen, 2016. "Peer effects in the diffusion of innovations: Theory and simulation," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 63(C), pages 1-13.
    19. Franke, Reiner, 2008. "Artificial Long Memory Effects in Two Agend-Based Asset Pricing Models," Economics Working Papers 2008-15, Christian-Albrechts-University of Kiel, Department of Economics.
    20. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:59:y:2022:i:2:d:10.1007_s10614-021-10115-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.