IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v353y2005icp445-462.html
   My bibliography  Save this article

A Type 2 fuzzy time series model for stock index forecasting

Author

Listed:
  • Huarng, Kunhuang
  • Yu, Hui-Kuang

Abstract

Most conventional fuzzy time series models (Type 1 models) utilize only one variable in forecasting. Furthermore, only part of the observations in relation to that variable are used. To utilize more of that variable's observations in forecasting, this study proposes the use of a Type 2 fuzzy time series model. In such a Type 2 model, extra observations are used to enrich or to refine the fuzzy relationships obtained from Type 1 models and then to improve forecasting performance. The Taiwan stock index, the TAIEX, is used as the forecasting target. The study period extends over the 2000–2003 period. The TAIEX from January to October in each year is used for the estimation, while that covering November and December is used for forecasting. The empirical analyses show that Type 2 model outperforms Type 1 model.

Suggested Citation

  • Huarng, Kunhuang & Yu, Hui-Kuang, 2005. "A Type 2 fuzzy time series model for stock index forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 445-462.
  • Handle: RePEc:eee:phsmap:v:353:y:2005:i:c:p:445-462
    DOI: 10.1016/j.physa.2004.11.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105000725
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.11.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    2. Ostermark, Ralf & Hernesniemi, Hannu, 1995. "The impact of information timeliness on the predictability of stock and futures returns: An application of vector models," European Journal of Operational Research, Elsevier, vol. 85(1), pages 111-131, August.
    3. Yu, Hui-Kuang, 2005. "Weighted fuzzy time series models for TAIEX forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 609-624.
    4. Yu, Hui-Kuang, 2005. "A refined fuzzy time-series model for forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 657-681.
    5. Bracker, Kevin & Koch, Paul D., 1999. "Economic determinants of the correlation structure across international equity markets," Journal of Economics and Business, Elsevier, vol. 51(6), pages 443-471.
    6. Verhoeven, Peter & Pilgram, Berndt & McAleer, Michael & Mees, Alistair, 2002. "Non-linear modelling and forecasting of S&P 500 volatility," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(1), pages 233-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Eduardo Medina Reyes & Agustín Ignacio Cabrera Llanos & Salvador Cruz Aké, 2023. "Fuzzy Gaussian GARCH and Fuzzy Gaussian EGARCH Models: Foreign Exchange Market Forecast," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 18(3), pages 1-22, Julio - S.
    2. Pal, Shanoli Samui & Kar, Samarjit, 2019. "Time series forecasting for stock market prediction through data discretization by fuzzistics and rule generation by rough set theory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 18-30.
    3. Chen, Tai-Liang & Cheng, Ching-Hsue & Jong Teoh, Hia, 2007. "Fuzzy time-series based on Fibonacci sequence for stock price forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 377-390.
    4. Jilani, Tahseen Ahmed & Burney, Syed Muhammad Aqil, 2008. "A refined fuzzy time series model for stock market forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2857-2862.
    5. Huarng, Kunhuang & Yu, Tiffany Hui-Kuang, 2006. "The application of neural networks to forecast fuzzy time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 481-491.
    6. Ni, Yensen & Wu, Manhwa & Day, Min-Yuh & Huang, Paoyu, 2020. "Do sharp movements in oil prices matter for stock markets?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    7. Chen, Tai-Liang & Cheng, Ching-Hsue & Teoh, Hia-Jong, 2008. "High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 876-888.
    8. Tai-Liang Chen, 2012. "Forecasting the Taiwan Stock Market with a Novel Momentum-based Fuzzy Time-series," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 38-50, February.
    9. Zhou, Qin & Shang, Pengjian, 2020. "Weighted multiscale cumulative residual Rényi permutation entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Chopra, Ritika & Sharma, Gagan Deep & Pereira, Vijay, 2024. "Identifying Bulls and bears? A bibliometric review of applying artificial intelligence innovations for stock market prediction," Technovation, Elsevier, vol. 135(C).
    11. Tai Vo-Van & Ha Che-Ngoc & Nghiep Le-Dai & Thao Nguyen-Trang, 2022. "A New Strategy for Short-Term Stock Investment Using Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 887-911, February.
    12. Zhou, Pengfei & Luo, Jie & Cheng, Fei & Yüksel, Serhat & Dinçer, Hasan, 2021. "Analysis of risk priorities for renewable energy investment projects using a hybrid IT2 hesitant fuzzy decision-making approach with alpha cuts," Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Eduardo Medina Reyes & Agustín Ignacio Cabrera Llanos & Salvador Cruz Aké, 2023. "Fuzzy Gaussian GARCH and Fuzzy Gaussian EGARCH Models: Foreign Exchange Market Forecast," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 18(3), pages 1-22, Julio - S.
    2. Tai-Liang Chen, 2012. "Forecasting the Taiwan Stock Market with a Novel Momentum-based Fuzzy Time-series," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 38-50, February.
    3. Singh, S.R., 2008. "A computational method of forecasting based on fuzzy time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 539-554.
    4. Ni, Yensen & Wu, Manhwa & Day, Min-Yuh & Huang, Paoyu, 2020. "Do sharp movements in oil prices matter for stock markets?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    5. Huarng, Kunhuang & Yu, Tiffany Hui-Kuang, 2006. "The application of neural networks to forecast fuzzy time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 481-491.
    6. Jilani, Tahseen Ahmed & Burney, Syed Muhammad Aqil, 2008. "A refined fuzzy time series model for stock market forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2857-2862.
    7. Chen, Tai-Liang & Cheng, Ching-Hsue & Teoh, Hia-Jong, 2008. "High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 876-888.
    8. Claire G.Gilmore & Brian Lucey & Ginette M.McManus, 2005. "The Dynamics of Central European Equity Market Integration," The Institute for International Integration Studies Discussion Paper Series iiisdp069, IIIS.
    9. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    10. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    11. Tully, Edel & Lucey, Brian M., 2007. "A power GARCH examination of the gold market," Research in International Business and Finance, Elsevier, vol. 21(2), pages 316-325, June.
    12. Lima, Luiz Renato & Néri, Breno Pinheiro, 2007. "Comparing Value-at-Risk Methodologies," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 27(1), May.
    13. Cyril Coste & Raphaël Douady & Ilija I Zovko, 2010. "The StressVaR: A New Risk Concept for Extreme Risk and Fund Allocation," Post-Print hal-02488591, HAL.
    14. Bjoern Schulte-Tillmann & Mawuli Segnon & Timo Wiedemann, 2023. "A comparison of high-frequency realized variance measures: Duration- vs. return-based approaches," CQE Working Papers 10523, Center for Quantitative Economics (CQE), University of Muenster.
    15. Chen, Tai-Liang & Cheng, Ching-Hsue & Jong Teoh, Hia, 2007. "Fuzzy time-series based on Fibonacci sequence for stock price forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 377-390.
    16. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    17. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    18. Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    20. Yousaf, Imran & Beljid, Makram & Chaibi, Anis & Ajlouni, Ahmed AL, 2022. "Do volatility spillover and hedging among GCC stock markets and global factors vary from normal to turbulent periods? Evidence from the global financial crisis and Covid-19 pandemic crisis," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:353:y:2005:i:c:p:445-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.