IDEAS home Printed from https://ideas.repec.org/a/bap/journl/120103.html
   My bibliography  Save this article

Forecasting the Taiwan Stock Market with a Novel Momentum-based Fuzzy Time-series

Author

Listed:
  • Tai-Liang Chen

    () (Wenzao Ursuline College of Languages, Republic of China)

Abstract

Fuzzy time-series models have been utilized in making reasonably accurate predictions in many areas, such as academic enrollments, weather forecasting and stock markets. To refine past fuzzy time-series models, this paper proposes a new model, which employs the concepts of ¡°momentum¡± along with Chebyshev¡¯s theorem in the forecasting process. The proposed model applies a ¡°momentum¡± index to generate forecasting rules (fuzzy logical relationships) to reduce the probability of rules not being found in cases where no rules are available to forecast a testing dataset. Chebyshev¡¯s theorem is adopted to define a ¡°reasonable¡± universe of discourse for the observations in a training dataset. From the refined process, two types of universe, symmetrical and asymmetrical, are given. To verify the proposed model, this paper employs experimental datasets, derived from a seven-year period of the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). Model comparison results show that the proposed model surpasses in accuracy one traditional fuzzy time-series model and two advanced models, based on neural networks and rough set algorithms.

Suggested Citation

  • Tai-Liang Chen, 2012. "Forecasting the Taiwan Stock Market with a Novel Momentum-based Fuzzy Time-series," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 38-50, February.
  • Handle: RePEc:bap:journl:120103
    as

    Download full text from publisher

    File URL: http://www.bapress.ca/Journal-6/Forecasting%20the%20Taiwan%20Stock%20Market%20with%20a%20Novel%20Momentum-based%20Fuzzy%20Time-series.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Huarng, Kunhuang & Yu, Hui-Kuang, 2005. "A Type 2 fuzzy time series model for stock index forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 445-462.
    2. Chen, Tai-Liang & Cheng, Ching-Hsue & Jong Teoh, Hia, 2007. "Fuzzy time-series based on Fibonacci sequence for stock price forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 377-390.
    3. Tanaka-Yamawaki, Mieko & Tokuoka, Seiji, 2007. "Adaptive use of technical indicators for the prediction of intra-day stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 125-133.
    4. Chen, Tai-Liang & Cheng, Ching-Hsue & Teoh, Hia-Jong, 2008. "High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 876-888.
    5. Huarng, Kunhuang & Yu, Tiffany Hui-Kuang, 2006. "The application of neural networks to forecast fuzzy time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 481-491.
    6. Yu, Hui-Kuang, 2005. "Weighted fuzzy time series models for TAIEX forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 609-624.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Wang, Hui & Pandey, Ras B, 2004. "A momentum trading approach to technical analysis of Dow Jones industrials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 331(3), pages 639-650.
    9. Yu, Hui-Kuang, 2005. "A refined fuzzy time-series model for forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 657-681.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Fuzzy time-series; Stock price forecasting; Fuzzy linguistic variable;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bap:journl:120103. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Carlson). General contact details of provider: http://www.bapress.ca .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.