A New Appraisal Model of Second-Hand Housing Prices in China’s First-Tier Cities Based on Machine Learning Algorithms
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-020-09973-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Prashant Das & Patrick Smith & Paul Gallimore, 2018. "Pricing Extreme Attributes in Commercial Real Estate: the Case of Hotel Transactions," The Journal of Real Estate Finance and Economics, Springer, vol. 57(2), pages 264-296, August.
- Marcel A. J. Theebe, 2004. "Planes, Trains, and Automobiles: The Impact of Traffic Noise on House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 28(2_3), pages 209-234, March.
- XingYu Fu & JinHong Du & YiFeng Guo & MingWen Liu & Tao Dong & XiuWen Duan, 2018. "A Machine Learning Framework for Stock Selection," Papers 1806.01743, arXiv.org, revised Aug 2018.
- Fabian Taigel & Anselme K. Tueno & Richard Pibernik, 2018. "Privacy-preserving condition-based forecasting using machine learning," Journal of Business Economics, Springer, vol. 88(5), pages 563-592, July.
- Dickson K. W. Chiu & Yves T. F. Yueh & Ho-fung Leung & Patrick C. K. Hung, 2009. "Towards ubiquitous tourist service coordination and process integration: A collaborative travel agent system architecture with semantic web services," Information Systems Frontiers, Springer, vol. 11(3), pages 241-256, July.
- Friendly M., 2002. "Corrgrams: Exploratory Displays for Correlation Matrices," The American Statistician, American Statistical Association, vol. 56, pages 316-324, November.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- Periklis Gogas & Theophilos Papadimitriou & Maria Matthaiou & Efthymia Chrysanthidou, 2015.
"Yield Curve and Recession Forecasting in a Machine Learning Framework,"
Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 635-645, April.
- Theophilos Papadimitriou & Periklis Gogas & Maria Matthaiou & Efthymia Chrysanthidou, 2014. "Yield curve and Recession Forecasting in a Machine Learning Framework," Working Paper series 32_14, Rimini Centre for Economic Analysis.
- Gogas, Periklis & Papadimitriou , Theophilos & Matthaiou, Maria- Artemis & Chrysanthidou, Efthymia, 2014. "Yield Curve and Recession Forecasting in a Machine Learning Framework," DUTH Research Papers in Economics 8-2014, Democritus University of Thrace, Department of Economics.
- Lynn Wu & Erik Brynjolfsson, 2015. "The Future of Prediction: How Google Searches Foreshadow Housing Prices and Sales," NBER Chapters, in: Economic Analysis of the Digital Economy, pages 89-118, National Bureau of Economic Research, Inc.
- Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021.
"Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
- Marcelo Madeiros & Gabriel Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2019. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Working Papers Central Bank of Chile 834, Central Bank of Chile.
- Jianrong Yao & Jiarui Chen & June Wei & Yuangao Chen & Shuiqing Yang, 2019. "The relationship between soft information in loan titles and online peer-to-peer lending: evidence from RenRenDai platform," Electronic Commerce Research, Springer, vol. 19(1), pages 111-129, March.
- Guo, Juncong & Qu, Xi, 2019. "Spatial interactive effects on housing prices in Shanghai and Beijing," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 147-160.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cankun Wei & Meichen Fu & Li Wang & Hanbing Yang & Feng Tang & Yuqing Xiong, 2022. "The Research Development of Hedonic Price Model-Based Real Estate Appraisal in the Era of Big Data," Land, MDPI, vol. 11(3), pages 1-30, February.
- Raul-Tomas Mora-Garcia & Maria-Francisca Cespedes-Lopez & V. Raul Perez-Sanchez, 2022. "Housing Price Prediction Using Machine Learning Algorithms in COVID-19 Times," Land, MDPI, vol. 11(11), pages 1-32, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020.
"News Media vs. FRED-MD for Macroeconomic Forecasting,"
CESifo Working Paper Series
8639, CESifo.
- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News media vs. FRED-MD for macroeconomic forecasting," Working Paper 2020/14, Norges Bank.
- Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.
- Emmanuel Sirimal Silva & Hossein Hassani & Dag Øivind Madsen & Liz Gee, 2019. "Googling Fashion: Forecasting Fashion Consumer Behaviour Using Google Trends," Social Sciences, MDPI, vol. 8(4), pages 1-23, April.
- Emanuel Kohlscheen, 2022.
"Quantifying the Role of Interest Rates, the Dollar and Covid in Oil Prices,"
Papers
2208.14254, arXiv.org, revised Oct 2022.
- Emanuel Kohlscheen, 2022. "Quantifying the role of interest rates, the Dollar and Covid in oil prices," BIS Working Papers 1040, Bank for International Settlements.
- Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023.
"Big data forecasting of South African inflation,"
Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
- Byron Botha & Kevin Kotze & Neil Rankin & Rulof P. Burger, 2022. "Big data forecasting of South African inflation," Working Papers 873, Economic Research Southern Africa.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," School of Economics Macroeconomic Discussion Paper Series 2022-03, School of Economics, University of Cape Town.
- Byron Botha & Rulof Burger & Kevin Kotz & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," Working Papers 11022, South African Reserve Bank.
- Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.
- Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Knut Lehre Seip & Dan Zhang, 2021. "The Yield Curve as a Leading Indicator: Accuracy and Timing of a Parsimonious Forecasting Model," Forecasting, MDPI, vol. 3(2), pages 1-16, May.
- Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023.
"Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models,"
Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
- Gustavo Silva Araujo & Wagner Piazza Gaglianone, 2022. "Machine Learning Methods for Inflation Forecasting in Brazil: new contenders versus classical models," Working Papers Series 561, Central Bank of Brazil, Research Department.
- Rama K. Malladi, 2024. "Benchmark Analysis of Machine Learning Methods to Forecast the U.S. Annual Inflation Rate During a High-Decile Inflation Period," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 335-375, July.
- Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023.
"Density forecasts of inflation: a quantile regression forest approach,"
CEPR Discussion Papers
18298, C.E.P.R. Discussion Papers.
- Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023. "Density forecasts of inflation: a quantile regression forest approach," Working Paper Series 2830, European Central Bank.
- M. Lenza & I. Moutachaker & I. Moutachaker, 2024. "Density forecasts of inflation : a quantile regression forest approach," Documents de Travail de l'Insee - INSEE Working Papers 2024-12, Institut National de la Statistique et des Etudes Economiques.
- Houcine Senoussi, 2021. "Inflation and Inflation Uncertainty in Growth Model of Barro: An Application of Random Forest Method," International Econometric Review (IER), Econometric Research Association, vol. 13(1), pages 4-23, March.
- Hamdy Ahmad Aly Alhendawy & Mohammed Galal Abdallah Mostafa & Mohamed Ibrahim Elgohari & Ibrahim Abdalla Abdelraouf Mohamed & Nabil Medhat Arafat Mahmoud & Mohamed Ahmed Mohamed Mater, 2023. "Determinants of Renewable Energy Production in Egypt New Approach: Machine Learning Algorithms," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 679-689, November.
- Jaehyun Yoon, 2021. "Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 247-265, January.
- Felipe Leal & Carlos Molina & Eduardo Zilberman, 2020. "Proyección de la Inflación en Chile con Métodos de Machine Learning," Working Papers Central Bank of Chile 860, Central Bank of Chile.
- Anesti, Nikoleta & Kalamara, Eleni & Kapetanios, George, 2021. "Forecasting UK GDP growth with large survey panels," Bank of England working papers 923, Bank of England.
- Guilherme Lindenmeyer & Pedro Pablo Skorin & Hudson da Silva Torrent, 2021. "Using boosting for forecasting electric energy consumption during a recession: a case study for the Brazilian State Rio Grande do Sul," Letters in Spatial and Resource Sciences, Springer, vol. 14(2), pages 111-128, August.
- Li, Xin & Pan, Bing & Law, Rob & Huang, Xiankai, 2017. "Forecasting tourism demand with composite search index," Tourism Management, Elsevier, vol. 59(C), pages 57-66.
- Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020.
"News Media vs. FRED-MD for Macroeconomic Forecasting,"
CESifo Working Paper Series
8639, CESifo.
- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News media vs. FRED-MD for macroeconomic forecasting," Working Papers No 08/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News media vs. FRED-MD for macroeconomic forecasting," Working Paper 2020/14, Norges Bank.
More about this item
Keywords
Second-hand housing appraisal model; Machine learning; Natural language processing; Stacking ensemble model; Data visualization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:57:y:2021:i:2:d:10.1007_s10614-020-09973-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.