IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Mortality forecasting using neural networks and an application to cause-specific data for insurance purposes

Listed author(s):
  • Paras Shah

    (Department of Electrical and Computer Engineering, Drexel University, Philadelphia, Pennsylvania, USA)

  • Allon Guez

    (Department of Electrical and Computer Engineering, Drexel University, Philadelphia, Pennsylvania, USA)

Registered author(s):

    Mortality forecasting is important for life insurance policies, as well as in other areas. Current techniques for forecasting mortality in the USA involve the use of the Lee-Carter model, which is primarily used without regard to cause. A method for forecasting morality is proposed which involves the use of neural networks. A comparative analysis is done between the Lee-Carter model, linear trend and the proposed method. The results confirm that the use of neural networks performs better than the Lee-Carter and linear trend model within 5% error. Furthermore, mortality rates and life expectancy were formulated for individuals with a specific cause based on prevalence data. The rates are broken down further into respective stages (cancer) based on the individual's diagnosis. Therefore, this approach allows life expectancy to be calculated based on an individual's state of health. Copyright © 2008 John Wiley & Sons, Ltd.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Link to full text; subscription required
    Download Restriction: no

    Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

    Volume (Year): 28 (2009)
    Issue (Month): 6 ()
    Pages: 535-548

    in new window

    Handle: RePEc:jof:jforec:v:28:y:2009:i:6:p:535-548
    DOI: 10.1002/for.1111
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Kirill F. Andreev & James W. Vaupel, 2006. "Forecasts of cohort mortality after age 50," MPIDR Working Papers WP-2006-012, Max Planck Institute for Demographic Research, Rostock, Germany.
    2. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:28:y:2009:i:6:p:535-548. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.