IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2019-66-2.html
   My bibliography  Save this article

Calibrating Agent-Based Models with Linear Regressions

Author

Abstract

In this paper, we introduce a simple way to parametrize simulation models by using regularized linear regression. Regressions bypass the three major challenges of calibrating by minimization: selecting the summary statistics, defining the distance function and minimizing it numerically. By substituting regression with classification, we can extend this approach to model selection. We present five example estimations: a statistical fit, a biological individual-based model, a simple real business cycle model, a non-linear biological simulation and heuristics selection in a fishery agent-based model. The outcome is a method that automatically chooses summary statistics, weighs them and uses them to parametrize models without running any direct minimization.

Suggested Citation

  • Ernesto Carrella & Richard Bailey & Jens Koed Madsen, 2020. "Calibrating Agent-Based Models with Linear Regressions," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(1), pages 1-7.
  • Handle: RePEc:jas:jasssj:2019-66-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/23/1/7/7.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    2. Altonji, Joseph G & Segal, Lewis M, 1996. "Small-Sample Bias in GMM Estimation of Covariance Structures," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 353-366, July.
    3. Bruins, Marianne & Duffy, James A. & Keane, Michael P. & Smith, Anthony A., 2018. "Generalized indirect inference for discrete choice models," Journal of Econometrics, Elsevier, vol. 205(1), pages 177-203.
    4. Jennifer Badham & Chipp Jansen & Nigel Shardlow & Thomas French, 2017. "Calibrating with Multiple Criteria: A Demonstration of Dominance," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(2), pages 1-11.
    5. Blum, Michael G. B., 2010. "Approximate Bayesian Computation: A Nonparametric Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1178-1187.
    6. Lagarrigues, Guillaume & Jabot, Franck & Lafond, Valentine & Courbaud, Benoit, 2015. "Approximate Bayesian computation to recalibrate individual-based models with population data: Illustration with a forest simulation model," Ecological Modelling, Elsevier, vol. 306(C), pages 278-286.
    7. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Martinoli & Alessio Moneta & Gianluca Pallante, 2022. "Calibration and Validation of Macroeconomic Simulation Models by Statistical Causal Search," LEM Papers Series 2022/33, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Troost, Christian & Huber, Robert & Bell, Andrew R. & van Delden, Hedwig & Filatova, Tatiana & Le, Quang Bao & Lippe, Melvin & Niamir, Leila & Polhill, J. Gareth & Sun, Zhanli & Berger, Thomas, 2023. "How to keep it adequate: A protocol for ensuring validity in agent-based simulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 159, pages 1-21.
    3. Sikk, Kaarel & Caruso, Geoffrey, 2024. "Framing settlement systems as spatial adaptive systems," Ecological Modelling, Elsevier, vol. 490(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    2. Barde, Sylvain, 2020. "Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    3. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    4. Platt, Donovan & Gebbie, Tim, 2018. "Can agent-based models probe market microstructure?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1092-1106.
    5. Delli Gatti, Domenico & Grazzini, Jakob, 2020. "Rising to the challenge: Bayesian estimation and forecasting techniques for macroeconomic Agent Based Models," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 875-902.
    6. Shintaro Yamaguchi, 2010. "Job Search, Bargaining, and Wage Dynamics," Journal of Labor Economics, University of Chicago Press, vol. 28(3), pages 595-631, July.
    7. Vandin, Andrea & Giachini, Daniele & Lamperti, Francesco & Chiaromonte, Francesca, 2022. "Automated and distributed statistical analysis of economic agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    8. Valerio Scalone, 2018. "Estimating Non-Linear DSGEs with the Approximate Bayesian Computation: an application to the Zero Lower Bound," Working papers 688, Banque de France.
    9. Shiono, Takashi, 2021. "Estimation of agent-based models using Bayesian deep learning approach of BayesFlow," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    10. Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
    11. Yi Zhang & Zhe Li & Yongchao Zhang, 2020. "Validation and Calibration of an Agent-Based Model: A Surrogate Approach," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-9, January.
    12. Andrea Vandin & Daniele Giachini & Francesco Lamperti & Francesca Chiaromonte, 2021. "Automated and Distributed Statistical Analysis of Economic Agent-Based Models," Papers 2102.05405, arXiv.org, revised Nov 2023.
    13. Lux, Thomas, 2017. "Estimation of agent-based models using sequential Monte Carlo methods," Economics Working Papers 2017-07, Christian-Albrechts-University of Kiel, Department of Economics.
    14. Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
    15. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    16. Barde, Sylvain, 2024. "Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    17. Gianluca Capone & Franco Malerba & Richard R. Nelson & Luigi Orsenigo & Sidney G. Winter, 2019. "History friendly models: retrospective and future perspectives," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(1), pages 1-23, March.
    18. Chenkai Wang & Junji Ren & Peng Yang, 2024. "Alleviating Non-identifiability: a High-fidelity Calibration Objective for Financial Market Simulation with Multivariate Time Series Data," Papers 2407.16566, arXiv.org, revised Oct 2024.
    19. Aldo Glielmo & Marco Favorito & Debmallya Chanda & Domenico Delli Gatti, 2023. "Reinforcement Learning for Combining Search Methods in the Calibration of Economic ABMs," Papers 2302.11835, arXiv.org, revised Dec 2023.
    20. Francesco Lamperti, 2018. "Empirical validation of simulated models through the GSL-div: an illustrative application," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 143-171, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2019-66-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.