IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Econometric applications of maxmin expected utility

  • Gary Chamberlain

    (Department of Economics, Harvard University, Cambridge, MA 02138, USA)

Registered author(s):

    Gilboa and Schmeidler (1989) develop a set of axioms for decision making under uncertainty. The axioms imply a utility function and a set of distributions such that the preference ordering is obtained by calculating expected utility with respect to each distribution in the set, and then taking the minimum of expected utility over the set. In a portfolio choice problem, the distributions are joint distributions for the data that will be available when the choice is made and for the future returns that will determine the value of the portfolio. The set of distributions could be generated by combining a parametric model with a set of prior distributions. We apply this framework to obtain a preference ordering over decision rules, which map the data into a choice. We seek a decision rule that maximizes the minimum expected utility (or, equivalently, minimizes maximum risk) over the set of distributions. An algorithm is provided for the case of a finite set of distributions. It is based on solving a concave programme to find the least-favourable mixture of these distributions. The minimax rule is a Bayes rule with respect to this least-favourable distribution. The minimax value is a lower bound for minimax risk relative to a larger set of distributions. An upper bound can be found by fixing a decision rule and calculating its maximum risk. We apply the algorithm to an estimation problem in an autoregressive, random-effects model for panel data. Copyright © 2000 John Wiley & Sons, Ltd.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://qed.econ.queensu.ca:80/jae/2000-v15.6/
    File Function: Supporting data files and programs
    Download Restriction: no

    Article provided by John Wiley & Sons, Ltd. in its journal Journal of Applied Econometrics.

    Volume (Year): 15 (2000)
    Issue (Month): 6 ()
    Pages: 625-644

    as
    in new window

    Handle: RePEc:jae:japmet:v:15:y:2000:i:6:p:625-644
    Contact details of provider: Web page: http://www.interscience.wiley.com/jpages/0883-7252/

    Order Information: Web: http://www3.interscience.wiley.com/jcatalog/subscribe.jsp?issn=0883-7252 Email:


    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    2. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, 02.
    3. Chamberlain, Gary, 2000. "Econometrics and decision theory," Journal of Econometrics, Elsevier, vol. 95(2), pages 255-283, April.
    4. repec:cup:cbooks:9780521496032 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:jae:japmet:v:15:y:2000:i:6:p:625-644. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.