IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v65y2017i6p1460-1478.html
   My bibliography  Save this article

Integrated Anesthesiologist and Room Scheduling for Surgeries: Methodology and Application

Author

Listed:
  • Sandeep Rath

    (Kenan-Flagler Business School, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599)

  • Kumar Rajaram

    (University of California, Los Angeles (UCLA) Anderson School of Management, Los Angeles, California 90095)

  • Aman Mahajan

    (Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095)

Abstract

We consider the problem of minimizing daily expected resource usage and overtime costs across multiple parallel resources such as anesthesiologists and operating rooms, which are used to conduct a variety of surgical procedures at large multispecialty hospitals. To address this problem, we develop a two-stage, mixed-integer stochastic dynamic programming model with recourse. The first stage allocates these resources across multiple surgeries with uncertain durations and prescribes the sequence of surgeries to these resources. The second stage determines actual start times to surgeries based on realized durations of preceding surgeries and assigns overtime to resources to ensure all surgeries are completed using the allocation and sequence determined in the first stage. We develop a data-driven robust optimization method that solves large-scale real-sized versions of this model close to optimality. We validate and implement this model as a decision support system at the UCLA Ronald Reagan Medical Center. This system effectively incorporates the flexibility in the resources and uncertainty in surgical durations, and explicitly trades off resource usage and overtime costs. This has increased the average daily utilization of the anesthesiologists by 3.5% and of the operating rooms by 3.8%. This has led to an average daily cost savings of around 7% or estimated to be $2.2 million on an annual basis. In addition, the insights based on this model have significantly influenced decision making at the operating services department at this hospital.

Suggested Citation

  • Sandeep Rath & Kumar Rajaram & Aman Mahajan, 2017. "Integrated Anesthesiologist and Room Scheduling for Surgeries: Methodology and Application," Operations Research, INFORMS, vol. 65(6), pages 1460-1478, December.
  • Handle: RePEc:inm:oropre:v:65:y:2017:i:6:p:1460-1478
    DOI: 10.1287/opre.2017.1634
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2017.1634
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2017.1634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Brian T. Denton & Andrew J. Miller & Hari J. Balasubramanian & Todd R. Huschka, 2010. "Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty," Operations Research, INFORMS, vol. 58(4-part-1), pages 802-816, August.
    3. Marcelo Olivares & Christian Terwiesch & Lydia Cassorla, 2008. "Structural Estimation of the Newsvendor Model: An Application to Reserving Operating Room Time," Management Science, INFORMS, vol. 54(1), pages 41-55, January.
    4. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    5. Brian Denton & James Viapiano & Andrea Vogl, 2007. "Optimization of surgery sequencing and scheduling decisions under uncertainty," Health Care Management Science, Springer, vol. 10(1), pages 13-24, February.
    6. Camilo Mancilla & Robert Storer, 2012. "A sample average approximation approach to stochastic appointment sequencing and scheduling," IISE Transactions, Taylor & Francis Journals, vol. 44(8), pages 655-670.
    7. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    8. Biyu He & Franklin Dexter & Alex Macario & Stefanos Zenios, 2012. "The Timing of Staffing Decisions in Hospital Operating Rooms: Incorporating Workload Heterogeneity into the Newsvendor Problem," Manufacturing & Service Operations Management, INFORMS, vol. 14(1), pages 99-114, January.
    9. Birge, John R. & Louveaux, Francois V., 1988. "A multicut algorithm for two-stage stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 34(3), pages 384-392, March.
    10. Min, Daiki & Yih, Yuehwern, 2010. "Scheduling elective surgery under uncertainty and downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 206(3), pages 642-652, November.
    11. Linda V. Green & Sergei Savin, 2008. "Reducing Delays for Medical Appointments: A Queueing Approach," Operations Research, INFORMS, vol. 56(6), pages 1526-1538, December.
    12. Belií«n, Jeroen & Demeulemeester, Erik, 2008. "A branch-and-price approach for integrating nurse and surgery scheduling," European Journal of Operational Research, Elsevier, vol. 189(3), pages 652-668, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. Hainan Guo & Haobin Gu & Yu Zhou & Jiaxuan Peng, 2022. "A data-driven multi-fidelity simulation optimization for medical staff configuration at an emergency department in Hong Kong," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 238-262, June.
    3. Bahman Naderi & Vahid Roshanaei & Mehmet A. Begen & Dionne M. Aleman & David R. Urbach, 2021. "Increased Surgical Capacity without Additional Resources: Generalized Operating Room Planning and Scheduling," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2608-2635, August.
    4. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    5. Roshanaei, Vahid & Booth, Kyle E.C. & Aleman, Dionne M. & Urbach, David R. & Beck, J. Christopher, 2020. "Branch-and-check methods for multi-level operating room planning and scheduling," International Journal of Production Economics, Elsevier, vol. 220(C).
    6. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    7. Sandeep Rath & Kumar Rajaram, 2022. "Staff Planning for Hospitals with Implicit Cost Estimation and Stochastic Optimization," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1271-1289, March.
    8. Michael Fairley & David Scheinker & Margaret L. Brandeau, 2019. "Improving the efficiency of the operating room environment with an optimization and machine learning model," Health Care Management Science, Springer, vol. 22(4), pages 756-767, December.
    9. Roshanaei, Vahid & Naderi, Bahman, 2021. "Solving integrated operating room planning and scheduling: Logic-based Benders decomposition versus Branch-Price-and-Cut," European Journal of Operational Research, Elsevier, vol. 293(1), pages 65-78.
    10. Velibor V. Mišić & Georgia Perakis, 2020. "Data Analytics in Operations Management: A Review," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 158-169, January.
    11. Seokjun Youn & H. Neil Geismar & Michael Pinedo, 2022. "Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4407-4423, December.
    12. Velibor V. Miv{s}i'c & Georgia Perakis, 2019. "Data Analytics in Operations Management: A Review," Papers 1905.00556, arXiv.org.
    13. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    14. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    15. Francis de Véricourt & Georgia Perakis, 2020. "Frontiers in Service Science: The Management of Data Analytics Services: New Challenges and Future Directions," Service Science, INFORMS, vol. 12(4), pages 121-129, December.
    16. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    17. Hessam Bavafa & Charles M. Leys & Lerzan Örmeci & Sergei Savin, 2019. "Managing Portfolio of Elective Surgical Procedures: A Multidimensional Inverse Newsvendor Problem," Operations Research, INFORMS, vol. 67(6), pages 1543-1563, November.
    18. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.
    19. Lai, Xiaofan & Wu, Lingxiao & Wang, Kai & Wang, Fan, 2022. "Robust ship fleet deployment with shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 169-196.
    20. Kraul, Sebastian & Brunner, Jens O., 2023. "Stable annual scheduling of medical residents using prioritized multiple training schedules to combat operational uncertainty," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1263-1278.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    2. Sagnol, Guillaume & Barner, Christoph & Borndörfer, Ralf & Grima, Mickaël & Seeling, Matthes & Spies, Claudia & Wernecke, Klaus, 2018. "Robust allocation of operating rooms: A cutting plane approach to handle lognormal case durations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 420-435.
    3. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    4. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    5. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    6. Bernardetta Addis & Giuliana Carello & Andrea Grosso & Elena Tànfani, 2016. "Operating room scheduling and rescheduling: a rolling horizon approach," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 206-232, June.
    7. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
    8. Shehadeh, Karmel S. & Cohn, Amy E.M. & Epelman, Marina A., 2019. "Analysis of models for the Stochastic Outpatient Procedure Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 721-731.
    9. Marques, Inês & Captivo, M. Eugénia, 2017. "Different stakeholders’ perspectives for a surgical case assignment problem: Deterministic and robust approaches," European Journal of Operational Research, Elsevier, vol. 261(1), pages 260-278.
    10. Ho-Yin Mak & Ying Rong & Jiawei Zhang, 2014. "Sequencing Appointments for Service Systems Using Inventory Approximations," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 251-262, May.
    11. Arezoo Atighehchian & Mohammad Mehdi Sepehri & Pejman Shadpour & Kamran Kianfar, 2020. "A two-step stochastic approach for operating rooms scheduling in multi-resource environment," Annals of Operations Research, Springer, vol. 292(1), pages 191-214, September.
    12. Morteza Lalmazloumian & M. Fazle Baki & Majid Ahmadi, 2023. "A two-stage stochastic optimization framework to allocate operating room capacity in publicly-funded hospitals under uncertainty," Health Care Management Science, Springer, vol. 26(2), pages 238-260, June.
    13. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    14. Karsten Schwarz & Michael Römer & Taïeb Mellouli, 2019. "A data-driven hierarchical MILP approach for scheduling clinical pathways: a real-world case study from a German university hospital," Business Research, Springer;German Academic Association for Business Research, vol. 12(2), pages 597-636, December.
    15. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    16. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    17. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    18. Roshanaei, Vahid & Booth, Kyle E.C. & Aleman, Dionne M. & Urbach, David R. & Beck, J. Christopher, 2020. "Branch-and-check methods for multi-level operating room planning and scheduling," International Journal of Production Economics, Elsevier, vol. 220(C).
    19. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.
    20. Anders Reenberg Andersen & Thomas Jacob Riis Stidsen & Line Blander Reinhardt, 2020. "Simulation-Based Rolling Horizon Scheduling for Operating Theatres," SN Operations Research Forum, Springer, vol. 1(2), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:65:y:2017:i:6:p:1460-1478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.