Author
Listed:
- Mohammad Saeed Heidary
(Allameh Tabataba’I University)
- Devika Kannan
(University of Adelaide)
- Saeid Dehghani
(Sharif University of Technology)
- Hassan Mina
(Saito University College)
Abstract
With the occurrence of a public health crisis, the demand for healthcare services increases, which leads to an increase in the workload of hospitals. To overcome this predicament, hospitals should increase the number of their medical staff. Adding new medical staff, especially physicians, is a time-consuming process, and in such a situation, when the society is facing a shortage of physicians, it is almost impossible. Physician scheduling can be a practical solution to overcome this problem. Scheduling physicians without adding new physicians increases the workload of physicians, and this may affect their productivity and the service quality. To solve this problem, in addition to financial incentives, non-financial incentives such as increasing physicians' satisfaction should also be considered. Hence, by applying a novel mixed-integer linear programming (MILP) model, this study configures a decision support system for scheduling physicians by considering physicians' satisfaction during a public health crisis. The purpose of the proposed model is to maximize the fairness in the distribution of workload among physicians by considering their preferences. It should be noted that the satisfaction of physicians is considered using two indicators including equitable shifts distribution and physicians' preferences. The effectiveness of the proposed MILP model is examined using data from a hospital in Iran during the outbreak of the coronavirus disease (COVID-19). The investigated hospital consists of 15 regular departments that are served by 79 physicians. With the spread of COVID-19 pandemic, three departments are added to the existing departments to serve the COVID-19 patients. Finally, the proposed MILP model is implemented with and without considering physicians' preferences, and the effect of considering preferences on physician scheduling is shown.
Suggested Citation
Mohammad Saeed Heidary & Devika Kannan & Saeid Dehghani & Hassan Mina, 2025.
"A decision support system for physician scheduling during a public health crisis: a mathematical programming model,"
Annals of Operations Research, Springer, vol. 351(3), pages 1831-1881, August.
Handle:
RePEc:spr:annopr:v:351:y:2025:i:3:d:10.1007_s10479-025-06654-0
DOI: 10.1007/s10479-025-06654-0
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:351:y:2025:i:3:d:10.1007_s10479-025-06654-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.