IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v30y2021i8p2608-2635.html
   My bibliography  Save this article

Increased Surgical Capacity without Additional Resources: Generalized Operating Room Planning and Scheduling

Author

Listed:
  • Bahman Naderi
  • Vahid Roshanaei
  • Mehmet A. Begen
  • Dionne M. Aleman
  • David R. Urbach

Abstract

We study a generalized operating room planning and scheduling (GORPS) problem at the Toronto General Hospital (TGH) in Ontario, Canada. GORPS allocates elective patients and resources (i.e., operating rooms, surgeons, anesthetists) to days, assigns resources to patients, and sequences patients in each day. We consider patients’ due‐date, resource eligibility, heterogeneous performances of resources, downstream unit requirements, and lag times between resources. The goal is to create a weekly surgery schedule that minimizes fixed‐ and over‐time costs. We model GORPS using mixed‐integer and constraint programming models. To efficiently and effectively solve these models, we develop new‘ multi‐featured logic‐based Benders decomposition approaches. Using data from TGH, we demonstrate that our best algorithm solves GORPS with an average optimality gap of 2.71% which allows us to provide our practical recommendations. First, we can increase daily OR utilization to reach 80%—25% higher than the status quo in TGH. Second, we do not require to optimize for the daily selection of anesthetists—this finding allows for the development of effective dominance rules that significantly mitigate intractability. Third, solving GORPS without downstream capacities (like many papers in literature) makes GORPS easier to solve, but such OR schedules are only feasible in 24% of instances. Finally, with existing ORs’ safety capacities, TGH can manage 40% increase in its surgical volumes. We provide recommendations on how TGH must adjust its downstream capacities for varying levels of surgical volume increases (e.g., current urgent need for more capacity due to the current Covid‐19 pandemic).

Suggested Citation

  • Bahman Naderi & Vahid Roshanaei & Mehmet A. Begen & Dionne M. Aleman & David R. Urbach, 2021. "Increased Surgical Capacity without Additional Resources: Generalized Operating Room Planning and Scheduling," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2608-2635, August.
  • Handle: RePEc:bla:popmgt:v:30:y:2021:i:8:p:2608-2635
    DOI: 10.1111/poms.13397
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13397
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David, 2017. "Propagating logic-based Benders’ decomposition approaches for distributed operating room scheduling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 439-455.
    2. Naderi, Bahman & Roshanaei, Vahid, 2020. "Branch-Relax-and-Check: A tractable decomposition method for order acceptance and identical parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 286(3), pages 811-827.
    3. Tony T. Tran & Arthur Araujo & J. Christopher Beck, 2016. "Decomposition Methods for the Parallel Machine Scheduling Problem with Setups," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 83-95, February.
    4. Merve Bodur & Sanjeeb Dash & Oktay Günlük & James Luedtke, 2017. "Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 77-91, February.
    5. Pablo Santibáñez & Mehmet Begen & Derek Atkins, 2007. "Surgical block scheduling in a system of hospitals: an application to resource and wait list management in a British Columbia health authority," Health Care Management Science, Springer, vol. 10(3), pages 269-282, September.
    6. Mehmet A. Begen & Maurice Queyranne, 2011. "Appointment Scheduling with Discrete Random Durations," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 240-257, May.
    7. Pham, Dinh-Nguyen & Klinkert, Andreas, 2008. "Surgical case scheduling as a generalized job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1011-1025, March.
    8. Brian T. Denton & Andrew J. Miller & Hari J. Balasubramanian & Todd R. Huschka, 2010. "Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty," Operations Research, INFORMS, vol. 58(4-part-1), pages 802-816, August.
    9. Sandeep Rath & Kumar Rajaram & Aman Mahajan, 2017. "Integrated Anesthesiologist and Room Scheduling for Surgeries: Methodology and Application," Operations Research, INFORMS, vol. 65(6), pages 1460-1478, December.
    10. Harvey M. Wagner, 1959. "An integer linear‐programming model for machine scheduling," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 6(2), pages 131-140, June.
    11. Alan S. Manne, 1960. "On the Job-Shop Scheduling Problem," Operations Research, INFORMS, vol. 8(2), pages 219-223, April.
    12. Silva, Thiago A.O. & de Souza, Mauricio C. & Saldanha, Rodney R. & Burke, Edmund K., 2015. "Surgical scheduling with simultaneous employment of specialised human resources," European Journal of Operational Research, Elsevier, vol. 245(3), pages 719-730.
    13. Hossein Hashemi Doulabi & Gilles Pesant & Louis-Martin Rousseau, 2020. "Vehicle Routing Problems with Synchronized Visits and Stochastic Travel and Service Times: Applications in Healthcare," Transportation Science, INFORMS, vol. 54(4), pages 1053-1072, July.
    14. Vahid Roshanaei & Curtiss Luong & Dionne M. Aleman & David R. Urbach, 2017. "Collaborative Operating Room Planning and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 558-580, August.
    15. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    16. Andre A. Cire & Willem-Jan van Hoeve, 2013. "Multivalued Decision Diagrams for Sequencing Problems," Operations Research, INFORMS, vol. 61(6), pages 1411-1428, December.
    17. Jebali, AIda & Hadj Alouane, Atidel B. & Ladet, Pierre, 2006. "Operating rooms scheduling," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 52-62, February.
    18. Fei, H. & Chu, C. & Meskens, N. & Artiba, A., 2008. "Solving surgical cases assignment problem by a branch-and-price approach," International Journal of Production Economics, Elsevier, vol. 112(1), pages 96-108, March.
    19. David Pisinger & Mikkel Sigurd, 2007. "Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 36-51, February.
    20. Belií«n, Jeroen & Demeulemeester, Erik, 2008. "A branch-and-price approach for integrating nurse and surgery scheduling," European Journal of Operational Research, Elsevier, vol. 189(3), pages 652-668, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oosterhoff, Marije & Kouwenberg, Lisanne H.J.A. & Rotteveel, Adriënne H. & van Vliet, Ella D. & Stadhouders, Niek & de Wit, G. Ardine & van Giessen, Anoukh, 2023. "Estimating the health impact of delayed elective care during the COVID -19 pandemic in the Netherlands," Social Science & Medicine, Elsevier, vol. 320(C).
    2. Naderi, Bahman & Begen, Mehmet A. & Zaric, Gregory S. & Roshanaei, Vahid, 2023. "A novel and efficient exact technique for integrated staffing, assignment, routing, and scheduling of home care services under uncertainty," Omega, Elsevier, vol. 116(C).
    3. Hossein Hashemi Doulabi & Soheyl Khalilpourazari, 2023. "Stochastic weekly operating room planning with an exponential number of scenarios," Annals of Operations Research, Springer, vol. 328(1), pages 643-664, September.
    4. Seokjun Youn & H. Neil Geismar & Michael Pinedo, 2022. "Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4407-4423, December.
    5. Caglar Gencosman, Burcu & Begen, Mehmet A., 2022. "Exact optimization and decomposition approaches for shelf space allocation," European Journal of Operational Research, Elsevier, vol. 299(2), pages 432-447.
    6. Nathan Sudermann‐Merx & Steffen Rebennack & Christian Timpe, 2021. "Crossing Minimal Edge‐Constrained Layout Planning using Benders Decomposition," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3429-3447, October.
    7. Morteza Lalmazloumian & M. Fazle Baki & Majid Ahmadi, 2023. "A two-stage stochastic optimization framework to allocate operating room capacity in publicly-funded hospitals under uncertainty," Health Care Management Science, Springer, vol. 26(2), pages 238-260, June.
    8. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    9. Shaker Ardakani, Elham & Gilani Larimi, Niloofar & Oveysi Nejad, Maryam & Madani Hosseini, Mahsa & Zargoush, Manaf, 2023. "A resilient, robust transformation of healthcare systems to cope with COVID-19 through alternative resources," Omega, Elsevier, vol. 114(C).
    10. Liu, Jia & Bai, Jinyu & Wu, Desheng, 2021. "Medical supplies scheduling in major public health emergencies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    11. Bahman Naderi & Rubén Ruiz & Vahid Roshanaei, 2023. "Mixed-Integer Programming vs. Constraint Programming for Shop Scheduling Problems: New Results and Outlook," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 817-843, July.
    12. Alexander Alekseevich Lazarev & Darya Vladimirovna Lemtyuzhnikova & Mikhail Lvovich Somov, 2022. "Decomposition of the Knapsack Problem for Increasing the Capacity of Operating Rooms," Mathematics, MDPI, vol. 10(5), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roshanaei, Vahid & Booth, Kyle E.C. & Aleman, Dionne M. & Urbach, David R. & Beck, J. Christopher, 2020. "Branch-and-check methods for multi-level operating room planning and scheduling," International Journal of Production Economics, Elsevier, vol. 220(C).
    2. Roshanaei, Vahid & Naderi, Bahman, 2021. "Solving integrated operating room planning and scheduling: Logic-based Benders decomposition versus Branch-Price-and-Cut," European Journal of Operational Research, Elsevier, vol. 293(1), pages 65-78.
    3. Vahid Roshanaei & Curtiss Luong & Dionne M. Aleman & David R. Urbach, 2017. "Collaborative Operating Room Planning and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 558-580, August.
    4. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David R., 2020. "Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling," Omega, Elsevier, vol. 93(C).
    5. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    6. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    7. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David, 2017. "Propagating logic-based Benders’ decomposition approaches for distributed operating room scheduling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 439-455.
    8. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    9. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    10. Babak Akbarzadeh & Ghasem Moslehi & Mohammad Reisi-Nafchi & Broos Maenhout, 2020. "A diving heuristic for planning and scheduling surgical cases in the operating room department with nurse re-rostering," Journal of Scheduling, Springer, vol. 23(2), pages 265-288, April.
    11. Naderi, Bahman & Begen, Mehmet A. & Zaric, Gregory S. & Roshanaei, Vahid, 2023. "A novel and efficient exact technique for integrated staffing, assignment, routing, and scheduling of home care services under uncertainty," Omega, Elsevier, vol. 116(C).
    12. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    13. Naderi, Bahman & Roshanaei, Vahid, 2020. "Branch-Relax-and-Check: A tractable decomposition method for order acceptance and identical parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 286(3), pages 811-827.
    14. Karsten Schwarz & Michael Römer & Taïeb Mellouli, 2019. "A data-driven hierarchical MILP approach for scheduling clinical pathways: a real-world case study from a German university hospital," Business Research, Springer;German Academic Association for Business Research, vol. 12(2), pages 597-636, December.
    15. Silva, Thiago A.O. & de Souza, Mauricio C. & Saldanha, Rodney R. & Burke, Edmund K., 2015. "Surgical scheduling with simultaneous employment of specialised human resources," European Journal of Operational Research, Elsevier, vol. 245(3), pages 719-730.
    16. Lamiri, Mehdi & Grimaud, Frédéric & Xie, Xiaolan, 2009. "Optimization methods for a stochastic surgery planning problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 400-410, August.
    17. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    18. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
    19. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    20. Mengyu Guo & Su Wu & Binfeng Li & Jie Song & Youping Rong, 2016. "Integrated scheduling of elective surgeries and surgical nurses for operating room suites," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 166-181, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:30:y:2021:i:8:p:2608-2635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.