IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v59y2011i6p1504-1511.html
   My bibliography  Save this article

Revised Delivery-Time Quotation in Scheduling with Tardiness Penalties

Author

Listed:
  • George Steiner

    (DeGroote School of Business, McMaster University, Hamilton, Ontario L8S 4M4, Canada)

  • Rui Zhang

    (DeGroote School of Business, McMaster University, Hamilton, Ontario L8S 4M4, Canada)

Abstract

There are many situations in supply chain scheduling when the supplier finds it impossible to meet the promised due dates for some orders. We present a model for the rescheduling of orders with simultaneous assignment of attainable revised due dates to minimize due date escalation and tardiness penalties for the supplier. We show that the problem is equivalent to minimizing the total tardiness with rejection with respect to the original due dates. We prove that the problem is (N-script)(P-script)-hard and present a pseudopolynomial algorithm for it. We also present a fully polynomial time approximation scheme for the problem. Finally, we discuss the implications of our solution for setting fair tardiness penalties when due dates have to be renegotiated because of the delays.

Suggested Citation

  • George Steiner & Rui Zhang, 2011. "Revised Delivery-Time Quotation in Scheduling with Tardiness Penalties," Operations Research, INFORMS, vol. 59(6), pages 1504-1511, December.
  • Handle: RePEc:inm:oropre:v:59:y:2011:i:6:p:1504-1511
    DOI: 10.1287/opre.1110.0948
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1110.0948
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1110.0948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Slotnick, Susan A. & Sobel, Matthew J., 2005. "Manufacturing lead-time rules: Customer retention versus tardiness costs," European Journal of Operational Research, Elsevier, vol. 163(3), pages 825-856, June.
    2. Kenneth R. Baker & Gary D. Scudder, 1990. "Sequencing with Earliness and Tardiness Penalties: A Review," Operations Research, INFORMS, vol. 38(1), pages 22-36, February.
    3. Nicholas G. Hall & Chris N. Potts, 2003. "Supply chain scheduling: Batching and delivery," Operations Research, INFORMS, vol. 51(4), pages 566-584, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingfa Lu & Liqi Zhang, 2017. "Single-machine scheduling with production and rejection costs to minimize the maximum earliness," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 331-342, August.
    2. Peihai Liu & Xiwen Lu, 2020. "New approximation algorithms for machine scheduling with rejection on single and parallel machine," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 929-952, November.
    3. Esaignani Selvarajah & Rui Zhang, 2014. "Supply chain scheduling to minimize holding costs with outsourcing," Annals of Operations Research, Springer, vol. 217(1), pages 479-490, June.
    4. Shi-Sheng Li & Ren-Xia Chen, 2017. "Scheduling with Rejection and a Deteriorating Maintenance Activity on a Single Machine," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(02), pages 1-17, April.
    5. Sang, Yao-Wen & Wang, Jun-Qiang & Sterna, Małgorzata & Błażewicz, Jacek, 2023. "Single machine scheduling with due date assignment to minimize the total weighted lead time penalty and late work," Omega, Elsevier, vol. 121(C).
    6. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    7. Liqi Zhang & Lingfa Lu & Jinjiang Yuan, 2016. "Two-machine open-shop scheduling with rejection to minimize the makespan," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(2), pages 519-529, March.
    8. Liqi Zhang & Lingfa Lu & Shisheng Li, 2016. "New results on two-machine flow-shop scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1493-1504, May.
    9. Christos Koulamas & George Steiner, 2021. "New results for scheduling to minimize tardiness on one machine with rejection and related problems," Journal of Scheduling, Springer, vol. 24(1), pages 27-34, February.
    10. Na Geng & Letian Chen & Ran Liu & Yanhong Zhu, 2017. "Optimal patient assignment for W queueing network in a diagnostic facility setting," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5609-5631, October.
    11. Liqi Zhang & Lingfa Lu, 2016. "Parallel-machine scheduling with release dates and rejection," 4OR, Springer, vol. 14(2), pages 165-172, June.
    12. Roberto Cordone & Pierre Hosteins & Giovanni Righini, 2018. "A Branch-and-Bound Algorithm for the Prize-Collecting Single-Machine Scheduling Problem with Deadlines and Total Tardiness Minimization," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 168-180, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dvir Shabtay & George Steiner, 2007. "Optimal Due Date Assignment and Resource Allocation to Minimize the Weighted Number of Tardy Jobs on a Single Machine," Manufacturing & Service Operations Management, INFORMS, vol. 9(3), pages 332-350, March.
    2. Qian, Jianbo & Steiner, George, 2013. "Fast algorithms for scheduling with learning effects and time-dependent processing times on a single machine," European Journal of Operational Research, Elsevier, vol. 225(3), pages 547-551.
    3. Dvir Shabtay & George Steiner, 2008. "The single-machine earliness-tardiness scheduling problem with due date assignment and resource-dependent processing times," Annals of Operations Research, Springer, vol. 159(1), pages 25-40, March.
    4. Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2013. "Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries for multiple customers in supply chains," European Journal of Operational Research, Elsevier, vol. 228(2), pages 345-357.
    5. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    6. George Steiner & Rui Zhang, 2011. "Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries," Annals of Operations Research, Springer, vol. 191(1), pages 171-181, November.
    7. Xingong, Zhang & Yong, Wang, 2015. "Single-machine scheduling CON/SLK due window assignment problems with sum-of-processed times based learning effect," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 628-635.
    8. Shabtay, Dvir & Steiner, George & Zhang, Rui, 2016. "Optimal coordination of resource allocation, due date assignment and scheduling decisions," Omega, Elsevier, vol. 65(C), pages 41-54.
    9. Beatriz Andres & Vicente Javier Blanes, 2020. "A Negotiation Approach to Support the Strategies Alignment Process in Collaborative Networks," Sustainability, MDPI, vol. 12(7), pages 1-30, April.
    10. Alarcón, F. & Alemany, M.M.E. & Ortiz, A., 2009. "Conceptual framework for the characterization of the order promising process in a collaborative selling network context," International Journal of Production Economics, Elsevier, vol. 120(1), pages 100-114, July.
    11. Prabuddha De & Jay B. Ghosh & Charles E. Wells, 1994. "Due‐date assignment and early/tardy scheduling on identical parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(1), pages 17-32, February.
    12. X. Cai & F. S. Tu, 1996. "Scheduling jobs with random processing times on a single machine subject to stochastic breakdowns to minimize early‐tardy penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(8), pages 1127-1146, December.
    13. Li, Y. & Ip, W. H. & Wang, D. W., 1998. "Genetic algorithm approach to earliness and tardiness production scheduling and planning problem," International Journal of Production Economics, Elsevier, vol. 54(1), pages 65-76, January.
    14. Sun Lee, Ik & Yoon, S.H., 2010. "Coordinated scheduling of production and delivery stages with stage-dependent inventory holding costs," Omega, Elsevier, vol. 38(6), pages 509-521, December.
    15. Ip, W. H. & Yung, K. L. & Wang, Dingwei, 2004. "A branch and bound algorithm for sub-contractor selection in agile manufacturing environment," International Journal of Production Economics, Elsevier, vol. 87(2), pages 195-205, January.
    16. Kate, H.A. ten & Wijngaard, J. & Zijm, W.H.M., 1995. "Minimizing weighted total earliness, total tardiness and setup costs," Research Report 95A37, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    17. T C E Cheng & L Kang & C T Ng, 2004. "Due-date assignment and single machine scheduling with deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 198-203, February.
    18. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    19. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    20. Ventura, Jose A. & Radhakrishnan, Sanjay, 2003. "Single machine scheduling with symmetric earliness and tardiness penalties," European Journal of Operational Research, Elsevier, vol. 144(3), pages 598-612, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:59:y:2011:i:6:p:1504-1511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.