IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v191y2011i1p171-18110.1007-s10479-011-1000-6.html
   My bibliography  Save this article

Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries

Author

Listed:
  • George Steiner
  • Rui Zhang

Abstract

We study a supply chain scheduling problem, where a common due date is assigned to all jobs and the number of jobs in delivery batches is constrained by the batch size. Our goal is to minimize the sum of the weighted number of tardy jobs, the due-date-assignment costs and the batch-delivery costs. We show that some well-known $\mathcal{NP}$ -hard problems reduce to our problem. Then we propose a pseudo-polynomial algorithm for the problem, establishing that it is $\mathcal{NP}$ -hard only in the ordinary sense. Finally, we convert the algorithm into an efficient fully polynomial time approximation scheme. Copyright Springer Science+Business Media, LLC 2011

Suggested Citation

  • George Steiner & Rui Zhang, 2011. "Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries," Annals of Operations Research, Springer, vol. 191(1), pages 171-181, November.
  • Handle: RePEc:spr:annopr:v:191:y:2011:i:1:p:171-181:10.1007/s10479-011-1000-6
    DOI: 10.1007/s10479-011-1000-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-1000-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-1000-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Slotnick, Susan A. & Sobel, Matthew J., 2005. "Manufacturing lead-time rules: Customer retention versus tardiness costs," European Journal of Operational Research, Elsevier, vol. 163(3), pages 825-856, June.
    2. Dvir Shabtay & George Steiner, 2008. "The single-machine earliness-tardiness scheduling problem with due date assignment and resource-dependent processing times," Annals of Operations Research, Springer, vol. 159(1), pages 25-40, March.
    3. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
    4. Yaron Leyvand & Dvir Shabtay & George Steiner, 2010. "Optimal delivery time quotation to minimize total tardiness penalties with controllable processing times," IISE Transactions, Taylor & Francis Journals, vol. 42(3), pages 221-231.
    5. Nicholas Hall & Chris Potts, 2005. "The Coordination of Scheduling and Batch Deliveries," Annals of Operations Research, Springer, vol. 135(1), pages 41-64, March.
    6. Nicholas G. Hall & Chris N. Potts, 2003. "Supply chain scheduling: Batching and delivery," Operations Research, INFORMS, vol. 51(4), pages 566-584, August.
    7. Thomas, Douglas J. & Griffin, Paul M., 1996. "Coordinated supply chain management," European Journal of Operational Research, Elsevier, vol. 94(1), pages 1-15, October.
    8. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shabtay, Dvir & Mosheiov, Gur & Oron, Daniel, 2022. "Single machine scheduling with common assignable due date/due window to minimize total weighted early and late work," European Journal of Operational Research, Elsevier, vol. 303(1), pages 66-77.
    2. Sang, Yao-Wen & Wang, Jun-Qiang & Sterna, Małgorzata & Błażewicz, Jacek, 2023. "Single machine scheduling with due date assignment to minimize the total weighted lead time penalty and late work," Omega, Elsevier, vol. 121(C).
    3. Hongyan Li & Joern Meissner, 2018. "Capacity optimization and competition with cyclical and lead-time-dependent demands," Annals of Operations Research, Springer, vol. 271(2), pages 737-763, December.
    4. Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2013. "Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries for multiple customers in supply chains," European Journal of Operational Research, Elsevier, vol. 228(2), pages 345-357.
    5. Chen, Ke & Cheng, T.C.E. & Huang, Hailiang & Ji, Min & Yao, Danli, 2023. "Single-machine scheduling with autonomous and induced learning to minimize total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 309(1), pages 24-34.
    6. Radosław Rudek, 2012. "Scheduling problems with position dependent job processing times: computational complexity results," Annals of Operations Research, Springer, vol. 196(1), pages 491-516, July.
    7. Shahed Mahmud & Ripon K. Chakrabortty & Alireza Abbasi & Michael J. Ryan, 2022. "Switching strategy-based hybrid evolutionary algorithms for job shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1939-1966, October.
    8. Saeed Yaghoubi, 2015. "Due-date assignment for multi-server multi-stage assembly systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(7), pages 1246-1256, May.
    9. Dvir Shabtay, 2023. "A new perspective on single-machine scheduling problems with late work related criteria," Annals of Operations Research, Springer, vol. 322(2), pages 947-966, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esaignani Selvarajah & George Steiner, 2009. "Approximation Algorithms for the Supplier's Supply Chain Scheduling Problem to Minimize Delivery and Inventory Holding Costs," Operations Research, INFORMS, vol. 57(2), pages 426-438, April.
    2. Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2013. "Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries for multiple customers in supply chains," European Journal of Operational Research, Elsevier, vol. 228(2), pages 345-357.
    3. Shabtay, Dvir & Steiner, George & Zhang, Rui, 2016. "Optimal coordination of resource allocation, due date assignment and scheduling decisions," Omega, Elsevier, vol. 65(C), pages 41-54.
    4. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    5. Selvarajah, Esaignani & Steiner, George, 2006. "Batch scheduling in a two-level supply chain--a focus on the supplier," European Journal of Operational Research, Elsevier, vol. 173(1), pages 226-240, August.
    6. Averbakh, Igor, 2010. "On-line integrated production-distribution scheduling problems with capacitated deliveries," European Journal of Operational Research, Elsevier, vol. 200(2), pages 377-384, January.
    7. Xiuli Wang & T. C. Edwin Cheng, 2007. "Machine scheduling with an availability constraint and job delivery coordination," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 11-20, February.
    8. Nodari Vakhania & Badri Mamporia, 2020. "Fast Algorithms for Basic Supply Chain Scheduling Problems," Mathematics, MDPI, vol. 8(11), pages 1-19, November.
    9. Gao, Su & Qi, Lian & Lei, Lei, 2015. "Integrated batch production and distribution scheduling with limited vehicle capacity," International Journal of Production Economics, Elsevier, vol. 160(C), pages 13-25.
    10. Öncü Hazır & Safia Kedad-Sidhoum, 2014. "Batch sizing and just-in-time scheduling with common due date," Annals of Operations Research, Springer, vol. 213(1), pages 187-202, February.
    11. Zhi-Long Chen, 2010. "Integrated Production and Outbound Distribution Scheduling: Review and Extensions," Operations Research, INFORMS, vol. 58(1), pages 130-148, February.
    12. Koulamas, Christos, 2011. "A unified solution approach for the due date assignment problem with tardy jobs," International Journal of Production Economics, Elsevier, vol. 132(2), pages 292-295, August.
    13. Alarcón, F. & Alemany, M.M.E. & Ortiz, A., 2009. "Conceptual framework for the characterization of the order promising process in a collaborative selling network context," International Journal of Production Economics, Elsevier, vol. 120(1), pages 100-114, July.
    14. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    15. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    16. Xiangtong Qi, 2005. "A logistics scheduling model: Inventory cost reduction by batching," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 312-320, June.
    17. George Steiner & Rui Zhang, 2011. "Revised Delivery-Time Quotation in Scheduling with Tardiness Penalties," Operations Research, INFORMS, vol. 59(6), pages 1504-1511, December.
    18. Li, Shisheng & Ng, C.T. & Yuan, Jinjiang, 2011. "Group scheduling and due date assignment on a single machine," International Journal of Production Economics, Elsevier, vol. 130(2), pages 230-235, April.
    19. Esaignani Selvarajah & Rui Zhang, 2014. "Supply chain scheduling to minimize holding costs with outsourcing," Annals of Operations Research, Springer, vol. 217(1), pages 479-490, June.
    20. Shabtay, Dvir & Zofi, Moshe, 2018. "Single machine scheduling with controllable processing times and an unavailability period to minimize the makespan," International Journal of Production Economics, Elsevier, vol. 198(C), pages 191-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:191:y:2011:i:1:p:171-181:10.1007/s10479-011-1000-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.