IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v322y2023i2d10.1007_s10479-022-04806-0.html
   My bibliography  Save this article

A new perspective on single-machine scheduling problems with late work related criteria

Author

Listed:
  • Dvir Shabtay

    (Ben-Gurion University of the Negev)

Abstract

This paper provides two new perspectives on single-machine scheduling problems in which the objective involves penalties regarding late work. Both of this perspectives have been neglected in the previous literature. We begin by presenting a parameterized complexity analysis of the $$\mathcal{N}\mathcal{P}$$ N P -hard problem of minimizing the total late work on a single machine. We do so with respect to the following four parameters: (i) the number of different processing times ( $$\upsilon _{p}$$ υ p ); (ii) the number of different due dates ( $$\upsilon _{d}$$ υ d ); (iii) the maximal processing time $$({p}_{\max });$$ ( p max ) ; and (iv) the maximal due date ( $$d_{\max }$$ d max ). We use results from the literature to conclude that the problem is hard with respect to (wrt.) parameter $$\upsilon _{d}$$ υ d and is tractable (i.e., solvable in FPT time) wrt. $$p_{\max }$$ p max . We then provide two FPT algorithms showing that the problem is also tractable wrt. to $$\upsilon _{p}$$ υ p and $$d_{\max }$$ d max . We continue by analyzing a single-machine scheduling problem with assignable due dates where the cost function to be minimized includes penalties due to weighted early and tardy work. We assume that each job can be assigned a different due-date, the value of which is subject to a job-dependent upper bound. We provide an efficient method to optimally assign due dates for a given job schedule. We then use this result to reduce the problem to a purely combinatorial problem, which we show is $$\mathcal{N}\mathcal{P}$$ N P -hard in general, but solvable in either FPT time or polynomial time for some special cases.

Suggested Citation

  • Dvir Shabtay, 2023. "A new perspective on single-machine scheduling problems with late work related criteria," Annals of Operations Research, Springer, vol. 322(2), pages 947-966, March.
  • Handle: RePEc:spr:annopr:v:322:y:2023:i:2:d:10.1007_s10479-022-04806-0
    DOI: 10.1007/s10479-022-04806-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04806-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04806-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baruch Mor & Gur Mosheiov, 2017. "A two-agent single machine scheduling problem with due-window assignment and a common flow-allowance," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1454-1468, May.
    2. Xin Chen & Malgorzata Sterna & Xin Han & Jacek Blazewicz, 2016. "Scheduling on parallel identical machines with late work criterion: Offline and online cases," Journal of Scheduling, Springer, vol. 19(6), pages 729-736, December.
    3. Danny Hermelin & Shlomo Karhi & Michael Pinedo & Dvir Shabtay, 2021. "New algorithms for minimizing the weighted number of tardy jobs on a single machine," Annals of Operations Research, Springer, vol. 298(1), pages 271-287, March.
    4. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
    5. C. N. Potts & L. N. Van Wassenhove, 1992. "Single Machine Scheduling to Minimize Total Late Work," Operations Research, INFORMS, vol. 40(3), pages 586-595, June.
    6. S. S. Panwalkar & M. L. Smith & A. Seidmann, 1982. "Common Due Date Assignment to Minimize Total Penalty for the One Machine Scheduling Problem," Operations Research, INFORMS, vol. 30(2), pages 391-399, April.
    7. Yunqiang Yin & Du‐Juan Wang & Chin‐Chia Wu & T.C.E. Cheng, 2016. "CON/SLK due date assignment and scheduling on a single machine with two agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(5), pages 416-429, August.
    8. Danny Hermelin & Dvir Shabtay & Nimrod Talmon, 2019. "On the parameterized tractability of the just-in-time flow-shop scheduling problem," Journal of Scheduling, Springer, vol. 22(6), pages 663-676, December.
    9. Sterna, Malgorzata, 2011. "A survey of scheduling problems with late work criteria," Omega, Elsevier, vol. 39(2), pages 120-129, April.
    10. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    11. George Steiner & Rui Zhang, 2011. "Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries," Annals of Operations Research, Springer, vol. 191(1), pages 171-181, November.
    12. G Mosheiov, 2003. "Due-date assignment with asymmetric earliness–tardiness cost," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(11), pages 1222-1224, November.
    13. Enrique Gerstl & Baruch Mor & Gur Mosheiov, 2019. "Scheduling on a proportionate flowshop to minimise total late work," International Journal of Production Research, Taylor & Francis Journals, vol. 57(2), pages 531-543, January.
    14. Cheng, T. C. E. & Oguz, C. & Qi, X. D., 1996. "Due-date assignment and single machine scheduling with compressible processing times," International Journal of Production Economics, Elsevier, vol. 43(1), pages 29-35, May.
    15. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    16. Cheng, T. C. E. & Oguz, C. & Qi, X. D., 1996. "Due-date assignment and single machine scheduling with compressible processing times," International Journal of Production Economics, Elsevier, vol. 43(2-3), pages 107-113, June.
    17. Shabtay, Dvir, 2016. "Optimal restricted due date assignment in scheduling," European Journal of Operational Research, Elsevier, vol. 252(1), pages 79-89.
    18. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    19. Jacek Blazewicz & Klaus H. Ecker & Erwin Pesch & Günter Schmidt & Malgorzata Sterna & Jan Weglarz, 2019. "Handbook on Scheduling," International Handbooks on Information Systems, Springer, edition 2, number 978-3-319-99849-7, November.
    20. A. M. A. Hariri & C. N. Potts & L. N. Van Wassenhove, 1995. "Single Machine Scheduling to Minimize Total Weighted Late Work," INFORMS Journal on Computing, INFORMS, vol. 7(2), pages 232-242, May.
    21. Sterna, Małgorzata, 2021. "Late and early work scheduling: A survey," Omega, Elsevier, vol. 104(C).
    22. Panwalkar, S. S. & Rajagopalan, R., 1992. "Single-machine sequencing with controllable processing times," European Journal of Operational Research, Elsevier, vol. 59(2), pages 298-302, June.
    23. H. W. Lenstra, 1983. "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 538-548, November.
    24. Yuan Zhang & Jinjiang Yuan, 2019. "A note on a two-agent scheduling problem related to the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 989-999, April.
    25. M. Y. Kovalyov & C. N. Potts & L. N. van Wassenhove, 1994. "A Fully Polynomial Approximation Scheme for Scheduling a Single Machine to Minimize Total Weighted Late Work," Mathematics of Operations Research, INFORMS, vol. 19(1), pages 86-93, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sang, Yao-Wen & Wang, Jun-Qiang & Sterna, Małgorzata & Błażewicz, Jacek, 2023. "Single machine scheduling with due date assignment to minimize the total weighted lead time penalty and late work," Omega, Elsevier, vol. 121(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shabtay, Dvir & Mosheiov, Gur & Oron, Daniel, 2022. "Single machine scheduling with common assignable due date/due window to minimize total weighted early and late work," European Journal of Operational Research, Elsevier, vol. 303(1), pages 66-77.
    2. Sterna, Małgorzata, 2021. "Late and early work scheduling: A survey," Omega, Elsevier, vol. 104(C).
    3. Sang, Yao-Wen & Wang, Jun-Qiang & Sterna, Małgorzata & Błażewicz, Jacek, 2023. "Single machine scheduling with due date assignment to minimize the total weighted lead time penalty and late work," Omega, Elsevier, vol. 121(C).
    4. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    5. Chen, Xin & Liang, Yage & Sterna, Małgorzata & Wang, Wen & Błażewicz, Jacek, 2020. "Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date," European Journal of Operational Research, Elsevier, vol. 284(1), pages 67-74.
    6. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    7. Shi-Sheng Li & Ren-Xia Chen, 2022. "Minimizing total weighted late work on a single-machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1330-1355, September.
    8. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    9. Rubing Chen & Jinjiang Yuan & C.T. Ng & T.C.E. Cheng, 2019. "Single‐machine scheduling with deadlines to minimize the total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 582-595, October.
    10. Yuan Zhang & Jinjiang Yuan & Chi To Ng & Tai Chiu E. Cheng, 2021. "Pareto‐optimization of three‐agent scheduling to minimize the total weighted completion time, weighted number of tardy jobs, and total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 378-393, April.
    11. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
    12. Malgorzata Sterna & Kateryna Czerniachowska, 2017. "Polynomial Time Approximation Scheme for Two Parallel Machines Scheduling with a Common Due Date to Maximize Early Work," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 927-944, September.
    13. Yuan Zhang & Jinjiang Yuan, 2019. "A note on a two-agent scheduling problem related to the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 989-999, April.
    14. Chen, Xin & Miao, Qian & Lin, Bertrand M.T. & Sterna, Malgorzata & Blazewicz, Jacek, 2022. "Two-machine flow shop scheduling with a common due date to maximize total early work," European Journal of Operational Research, Elsevier, vol. 300(2), pages 504-511.
    15. Ruyan He & Jinjiang Yuan, 2020. "Two-Agent Preemptive Pareto-Scheduling to Minimize Late Work and Other Criteria," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    16. Justkowiak, Jan-Erik & Kovalev, Sergey & Kovalyov, Mikhail Y. & Pesch, Erwin, 2023. "Single machine scheduling with assignable due dates to minimize maximum and total late work," European Journal of Operational Research, Elsevier, vol. 308(1), pages 76-83.
    17. Ruyan He & Jinjiang Yuan & C. T. Ng & T. C. E. Cheng, 2021. "Two-agent preemptive Pareto-scheduling to minimize the number of tardy jobs and total late work," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 504-525, February.
    18. Leyvand, Yaron & Shabtay, Dvir & Steiner, George, 2010. "A unified approach for scheduling with convex resource consumption functions using positional penalties," European Journal of Operational Research, Elsevier, vol. 206(2), pages 301-312, October.
    19. Koulamas, Christos & Gupta, Sushil & Kyparisis, George J., 2010. "A unified analysis for the single-machine scheduling problem with controllable and non-controllable variable job processing times," European Journal of Operational Research, Elsevier, vol. 205(2), pages 479-482, September.
    20. Baruch Mor & Gur Mosheiov, 2021. "Minmax due-date assignment on a two-machine flowshop," Annals of Operations Research, Springer, vol. 305(1), pages 191-209, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:322:y:2023:i:2:d:10.1007_s10479-022-04806-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.