IDEAS home Printed from
   My bibliography  Save this article

Note: Rule-Based Forecasting vs. Damped-Trend Exponential Smoothing


  • Everette S. Gardner

    (Center for Global Manufacturing, College of Business Administration, University of Houston, Houston, Texas 77204-6282)


This paper evaluates the ex ante performance of rule-based time series forecasting systems proposed in earlier research. The author shows that comparable performance can be obtained with a simpler alternative, a damped-trend version of exponential smoothing fitted to minimize the Mean-Absolute-Deviation (MAD) criterion. The results suggest that the performance of rule-based systems would be improved through this alternative and that time series forecasters should consider MAD fits in model development.

Suggested Citation

  • Everette S. Gardner, 1999. "Note: Rule-Based Forecasting vs. Damped-Trend Exponential Smoothing," Management Science, INFORMS, vol. 45(8), pages 1169-1176, August.
  • Handle: RePEc:inm:ormnsc:v:45:y:1999:i:8:p:1169-1176

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Vokurka, Robert J. & Flores, Benito E. & Pearce, Stephen L., 1996. "Automatic feature identification and graphical support in rule-based forecasting: a comparison," International Journal of Forecasting, Elsevier, vol. 12(4), pages 495-512, December.
    2. Makridakis, Spyros & Hibon, Michele, 1991. "Exponential smoothing: The effect of initial values and loss functions on post-sample forecasting accuracy," International Journal of Forecasting, Elsevier, vol. 7(3), pages 317-330, November.
    3. Fred Collopy & J. Scott Armstrong, 1992. "Rule-Based Forecasting: Development and Validation of an Expert Systems Approach to Combining Time Series Extrapolations," Management Science, INFORMS, vol. 38(10), pages 1394-1414, October.
    4. Zellner, Arnold, 1986. "A tale of forecasting 1001 series : The Bayesian knight strikes again," International Journal of Forecasting, Elsevier, vol. 2(4), pages 491-494.
    5. Fildes, Robert & Makridakis, Spyros, 1988. "Forecasting and loss functions," International Journal of Forecasting, Elsevier, vol. 4(4), pages 545-550.
    6. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    7. Fildes, Robert, 1992. "The evaluation of extrapolative forecasting methods," International Journal of Forecasting, Elsevier, vol. 8(1), pages 81-98, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Taylor, James W., 2003. "Exponential smoothing with a damped multiplicative trend," International Journal of Forecasting, Elsevier, vol. 19(4), pages 715-725.
    2. Sarah Gelper & Roland Fried & Christophe Croux, 2010. "Robust forecasting with exponential and Holt-Winters smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 285-300.
    3. Bermudez, J.D. & Segura, J.V. & Vercher, E., 2006. "A decision support system methodology for forecasting of time series based on soft computing," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 177-191, November.
    4. Taylor, James W., 2007. "Forecasting daily supermarket sales using exponentially weighted quantile regression," European Journal of Operational Research, Elsevier, vol. 178(1), pages 154-167, April.
    5. Anita Elberse & Jehoshua Eliashberg, 2003. "Demand and Supply Dynamics for Sequentially Released Products in International Markets: The Case of Motion Pictures," Marketing Science, INFORMS, vol. 22(3), pages 329-354.
    6. Gardner Jr., Everette S. & Diaz-Saiz, Joaquin, 2008. "Exponential smoothing in the telecommunications data," International Journal of Forecasting, Elsevier, vol. 24(1), pages 170-174.
    7. Adya, Monica & Collopy, Fred & Armstrong, J. Scott & Kennedy, Miles, 2001. "Automatic identification of time series features for rule-based forecasting," International Journal of Forecasting, Elsevier, vol. 17(2), pages 143-157.
    8. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:45:y:1999:i:8:p:1169-1176. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.