IDEAS home Printed from https://ideas.repec.org/a/inm/ordeca/v17y2020i1p9-23.html
   My bibliography  Save this article

What Is Six Hours Worth? The Impact of Lead Time on Tropical-Storm Preparation Decisions

Author

Listed:
  • Eva D. Regnier

    (Graduate School of Business and Public Policy, Naval Postgraduate School, Monterey, California 93943)

Abstract

Emergency managers must make high-stakes decisions regarding preparation for tropical storms when there is still considerable uncertainty regarding the storm’s impacts. Forecast quality improves as lead time until the forecast events declines. Reducing the lead time required for preparation decisions can substantially improve the quality of forecasts available for decision making and thereby, reduce the expected total costs of preparations plus storm damage. Measures of forecast quality are only indirectly linked to their value in preparation decisions and changes in the parameters of those decisions—in particular lead time. This paper provides decision-relevant measures of the quality of recent National Hurricane Center forecasts from the 2014–2018 seasons, which can be used to evaluate reductions in decision lead time in terms of false alarm rate, missed detections, and expected annual costs. For decision makers in some regions with decision lead times of 48–72 hours—typical for evacuation decisions—every 6-hour reduction in required lead time can reduce the false alarm rate by more than 10%.

Suggested Citation

  • Eva D. Regnier, 2020. "What Is Six Hours Worth? The Impact of Lead Time on Tropical-Storm Preparation Decisions," Decision Analysis, INFORMS, vol. 17(1), pages 9-23, March.
  • Handle: RePEc:inm:ordeca:v:17:y:2020:i:1:p:9-23
    DOI: 10.1287/deca.2019.0396
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/deca.2019.0396
    Download Restriction: no

    File URL: https://libkey.io/10.1287/deca.2019.0396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Serhan Duran & Özlem Ergun & Pınar Keskinocak & Julie L. Swann, 2013. "Humanitarian Logistics: Advanced Purchasing and Pre-Positioning of Relief Items," International Series in Operations Research & Management Science, in: James H. Bookbinder (ed.), Handbook of Global Logistics, edition 127, chapter 0, pages 447-462, Springer.
    2. Urbina, Elba & Wolshon, Brian, 2003. "National review of hurricane evacuation plans and policies: a comparison and contrast of state practices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 257-275, March.
    3. Eva Regnier, 2018. "Probability Forecasts Made at Multiple Lead Times," Management Science, INFORMS, vol. 64(5), pages 2407-2426, May.
    4. Eva D. Regnier & Cameron A. MacKenzie, 2019. "The Hurricane Decision Simulator: A Tool for Marine Forces in New Orleans to Practice Operations Management in Advance of a Hurricane," Service Science, INFORMS, vol. 21(1), pages 103-120, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robin L. Dillon & Vicki M. Bier & Richard Sheffield John & Abdullah Althenayyan, 2023. "Closing the Gap Between Decision Analysis and Policy Analysts Before the Next Pandemic," Decision Analysis, INFORMS, vol. 20(2), pages 109-132, June.
    2. William N. Caballero & Ethan Gharst & David Banks & Jeffery D. Weir, 2023. "Multipolar Security Cooperation Planning: A Multiobjective, Adversarial-Risk-Analysis Approach," Decision Analysis, INFORMS, vol. 20(1), pages 16-39, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bas Kolen & Matthijs Kok & Ira Helsloot & Bob Maaskant, 2013. "EvacuAid: A Probabilistic Model to Determine the Expected Loss of Life for Different Mass Evacuation Strategies During Flood Threats," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1312-1333, July.
    2. Dilsu Binnaz Ozkapici & Mustafa Alp Ertem & Haluk Aygüneş, 2016. "Intermodal humanitarian logistics model based on maritime transportation in Istanbul," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 345-364, August.
    3. Praveen Maghelal & Xiangyu Li & Walter Gillis Peacock, 2017. "Highway congestion during evacuation: examining the household’s choice of number of vehicles to evacuate," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1399-1411, July.
    4. Jiandong Chen & Ping Wang & Jixian Zhou & Malin Song & Xinyue Zhang, 2022. "Influencing factors and efficiency of funds in humanitarian supply chains: the case of Chinese rural minimum living security funds," Annals of Operations Research, Springer, vol. 319(1), pages 413-438, December.
    5. Rae Zimmerman, 2009. "Making Infrastructure Competitive in an Urban World," The ANNALS of the American Academy of Political and Social Science, , vol. 626(1), pages 226-241, November.
    6. Di, Zhen & Yang, Lixing, 2020. "Reversible lane network design for maximizing the coupling measure between demand structure and network structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    7. Christian Wankmüller & Gerald Reiner, 2020. "Coordination, cooperation and collaboration in relief supply chain management," Journal of Business Economics, Springer, vol. 90(2), pages 239-276, March.
    8. Fei Zhao & Liping Fu & Xiaofeng Pan & Tae J. Kwon & Ming Zhong, 2022. "Investigating the Effect of Network Traffic Signal Timing Strategy with Dynamic Variable Guidance Lanes," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    9. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    10. Ho Cheung Brian Lee & Jan Stallaert & Ming Fan, 2020. "Anomalies in Probability Estimates for Event Forecasting on Prediction Markets," Production and Operations Management, Production and Operations Management Society, vol. 29(9), pages 2077-2095, September.
    11. Sadri, Arif Mohaimin & Ukkusuri, Satish V. & Gladwin, Hugh, 2017. "Modeling joint evacuation decisions in social networks: The case of Hurricane Sandy," Journal of choice modelling, Elsevier, vol. 25(C), pages 50-60.
    12. James S. Dyer & James E. Smith, 2021. "Innovations in the Science and Practice of Decision Analysis: The Role of Management Science," Management Science, INFORMS, vol. 67(9), pages 5364-5378, September.
    13. Shi An & Ze Wang & Jianxun Cui, 2015. "Integrating Regret Psychology to Travel Mode Choice for a Transit-Oriented Evacuation Strategy," Sustainability, MDPI, vol. 7(7), pages 1-16, June.
    14. Bish, Douglas R. & Sherali, Hanif D., 2013. "Aggregate-level demand management in evacuation planning," European Journal of Operational Research, Elsevier, vol. 224(1), pages 79-92.
    15. Ghavamifar, Ali & Torabi, S. Ali & Moshtari, Mohammad, 2022. "A hybrid relief procurement contract for humanitarian logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    16. Linda B. Bourque & Judith M. Siegel & Megumi Kano & Michele M. Wood, 2006. "Weathering the Storm: The Impact of Hurricanes on Physical and Mental Health," The ANNALS of the American Academy of Political and Social Science, , vol. 604(1), pages 129-151, March.
    17. Lee D. Han & Fang Yuan & Shih-Miao Chin & Holing Hwang, 2006. "Global Optimization of Emergency Evacuation Assignments," Interfaces, INFORMS, vol. 36(6), pages 502-513, December.
    18. Yanyan Niu & Jia Yu & Dawei Lu & Renwu Mu & Jiahong Wen, 2022. "Spatial Allocation Method of Evacuation Guiders in Urban Open Public Spaces: A Case Study of Binjiang Green Space in Xuhui District, Shanghai, China," IJERPH, MDPI, vol. 19(19), pages 1-25, September.
    19. Zhang, Zhao & Parr, Scott A. & Jiang, Hai & Wolshon, Brian, 2015. "Optimization model for regional evacuation transportation system using macroscopic productivity function," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 616-630.
    20. Ahmad Mohamad El-Maissi & Sotirios A. Argyroudis & Moustafa Moufid Kassem & Lee Vien Leong & Fadzli Mohamed Nazri, 2022. "An Integrated Framework for the Quantification of Road Network Seismic Vulnerability and Accessibility to Critical Services," Sustainability, MDPI, vol. 14(19), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ordeca:v:17:y:2020:i:1:p:9-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.