IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v81y2015ip2p616-630.html
   My bibliography  Save this article

Optimization model for regional evacuation transportation system using macroscopic productivity function

Author

Listed:
  • Zhang, Zhao
  • Parr, Scott A.
  • Jiang, Hai
  • Wolshon, Brian

Abstract

The simulation of mass evacuation traffic processes, while enormously valuable in emergency planning and management, presents a number of challenges to transportation modelers and analysts. One area where evacuation modeling and analysis has lacked is in the ability to determine the specific evacuation travel demand and capacity and conditions under which a road network can most effectively carry the maximum outflow rate for an area under threat of catastrophic disasters. This is a difficult question to answer because evacuations are so complex and can include millions of people, traveling on tens of thousands of miles of roads, lasting several hours or even days in duration. Knowledge of how to reduce the likelihood of over-saturation would be useful, for example, to develop temporally and spatially phased evacuation plans that meter demand into the system for maximum overall benefit. In this paper an optimization model is proposed to maximize evacuation throughput traffic for regional networks. This model aims at optimizing network outflow and trip complete percentage at a macroscopic level by changing the distribution of evacuation traffic in the time horizon. The productivity function, pioneered by Geroliminis and Daganzo (2007, 2008) is used to assess network performance from a macroscopic point of view. Then, an optimization model with the objective of maximizing both total network productivity and outflow rate is proposed. Further, a simulation based study of the New Orleans metropolitan area is used to validate the effectiveness of the optimization model.

Suggested Citation

  • Zhang, Zhao & Parr, Scott A. & Jiang, Hai & Wolshon, Brian, 2015. "Optimization model for regional evacuation transportation system using macroscopic productivity function," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 616-630.
  • Handle: RePEc:eee:transb:v:81:y:2015:i:p2:p:616-630
    DOI: 10.1016/j.trb.2015.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515001599
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daganzo, Carlos F. & So, Stella K., 2011. "Managing evacuation networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1424-1432.
    2. Wu, Xinkai & Liu, Henry X. & Geroliminis, Nikolas, 2011. "An empirical analysis on the arterial fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 255-266, January.
    3. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    4. Cova, Thomas J. & Johnson, Justin P., 2003. "A network flow model for lane-based evacuation routing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(7), pages 579-604, August.
    5. Daganzo, Carlos F. & Gayah, Vikash V. & Gonzales, Eric J., 2011. "Macroscopic relations of urban traffic variables: Bifurcations, multivaluedness and instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 278-288, January.
    6. So, Stella K. & Daganzo, Carlos F., 2010. "Managing evacuation routes," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 514-520, May.
    7. Gayah, Vikash V. & Daganzo, Carlos F., 2011. "Clockwise hysteresis loops in the Macroscopic Fundamental Diagram: An effect of network instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 643-655, May.
    8. Leclercq, Ludovic & Geroliminis, Nikolas, 2013. "Estimating MFDs in simple networks with route choice," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 468-484.
    9. Urbina, Elba & Wolshon, Brian, 2003. "National review of hurricane evacuation plans and policies: a comparison and contrast of state practices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 257-275, March.
    10. Amin Mazloumian & Nikolas Geroliminis & Dirk Helbing, "undated". "The Spatial Variability of Vehicle Densities as Determinant of Urban Network Capacity," Working Papers CCSS-09-009, ETH Zurich, Chair of Systems Design.
    11. Gayah, Vikash V. & Gao, Xueyu (Shirley) & Nagle, Andrew S., 2014. "On the impacts of locally adaptive signal control on urban network stability and the Macroscopic Fundamental Diagram," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 255-268.
    12. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    13. Zhang, Lele & Garoni, Timothy M & de Gier, Jan, 2013. "A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 1-23.
    14. Geroliminis, Nikolas & Sun, Jie, 2011. "Properties of a well-defined macroscopic fundamental diagram for urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 605-617, March.
    15. Geroliminis, Nikolas & Sun, Jie, 2011. "Hysteresis phenomena of a Macroscopic Fundamental Diagram in freeway networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 966-979, November.
    16. Keyvan-Ekbatani, Mehdi & Kouvelas, Anastasios & Papamichail, Ioannis & Papageorgiou, Markos, 2012. "Exploiting the fundamental diagram of urban networks for feedback-based gating," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1393-1403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Namrata & Patil, Gopal R. & Vu, Hai L., 2023. "Simple abstract models to study stability of urban networks with decentralized signal control," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 93-116.
    2. Wu, Wen-Xiang & Huang, Hai-Jun, 2019. "A combined, adaptive strategy for managing evacuation routes," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 182-198.
    3. Zhang, Zhao & Fu, Daocheng, 2022. "Modeling pedestrian–vehicle mixed-flow in a complex evacuation scenario," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    4. Zhengfeng Huang & Pengjun Zheng & Gang Ren & Yang Cheng & Bin Ran, 2016. "Simultaneous optimization of evacuation route and departure time based on link-congestion mitigation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 575-599, August.
    5. Satish V. Ukkusuri & Samiul Hasan & Binh Luong & Kien Doan & Xianyuan Zhan & Pamela Murray-Tuite & Weihao Yin, 2017. "A-RESCUE: An Agent based Regional Evacuation Simulator Coupled with User Enriched Behavior," Networks and Spatial Economics, Springer, vol. 17(1), pages 197-223, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gayah, Vikash V. & Gao, Xueyu (Shirley) & Nagle, Andrew S., 2014. "On the impacts of locally adaptive signal control on urban network stability and the Macroscopic Fundamental Diagram," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 255-268.
    2. Ramezani, Mohsen & Haddad, Jack & Geroliminis, Nikolas, 2015. "Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 1-19.
    3. Haddad, Jack & Zheng, Zhengfei, 2020. "Adaptive perimeter control for multi-region accumulation-based models with state delays," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 133-153.
    4. Laval, Jorge A. & Castrillón, Felipe, 2015. "Stochastic approximations for the macroscopic fundamental diagram of urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 904-916.
    5. Knoop, Victor L. & van Lint, Hans & Hoogendoorn, Serge P., 2015. "Traffic dynamics: Its impact on the Macroscopic Fundamental Diagram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 236-250.
    6. Xu, Guanhao & Gayah, Vikash V., 2023. "Non-unimodal and non-concave relationships in the network Macroscopic Fundamental Diagram caused by hierarchical streets," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 203-227.
    7. Wada, Kentaro & Satsukawa, Koki & Smith, Mike & Akamatsu, Takashi, 2019. "Network throughput under dynamic user equilibrium: Queue spillback, paradox and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 391-413.
    8. Zhong, R.X. & Chen, C. & Huang, Y.P. & Sumalee, A. & Lam, W.H.K. & Xu, D.B., 2018. "Robust perimeter control for two urban regions with macroscopic fundamental diagrams: A control-Lyapunov function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 687-707.
    9. Ampountolas, Konstantinos & Zheng, Nan & Geroliminis, Nikolas, 2017. "Macroscopic modelling and robust control of bi-modal multi-region urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 616-637.
    10. Qu, Xiaobo & Wang, Shuaian & Zhang, Jin, 2015. "On the fundamental diagram for freeway traffic: A novel calibration approach for single-regime models," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 91-102.
    11. Haddad, Jack & Ramezani, Mohsen & Geroliminis, Nikolas, 2013. "Cooperative traffic control of a mixed network with two urban regions and a freeway," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 17-36.
    12. Zhong, R.X. & Huang, Y.P. & Chen, C. & Lam, W.H.K. & Xu, D.B. & Sumalee, A., 2018. "Boundary conditions and behavior of the macroscopic fundamental diagram based network traffic dynamics: A control systems perspective," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 327-355.
    13. Alonso, Borja & Ibeas, Ángel & Musolino, Giuseppe & Rindone, Corrado & Vitetta, Antonino, 2019. "Effects of traffic control regulation on Network Macroscopic Fundamental Diagram: A statistical analysis of real data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 136-151.
    14. Haddad, Jack & Shraiber, Arie, 2014. "Robust perimeter control design for an urban region," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 315-332.
    15. Gao, Xueyu (Shirley) & Gayah, Vikash V., 2018. "An analytical framework to model uncertainty in urban network dynamics using Macroscopic Fundamental Diagrams," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 660-675.
    16. Zhang, Lele & Garoni, Timothy M & de Gier, Jan, 2013. "A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 1-23.
    17. Su, Z.C. & Chow, Andy H.F. & Fang, C.L. & Liang, E.M. & Zhong, R.X., 2023. "Hierarchical control for stochastic network traffic with reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 196-216.
    18. Kouvelas, Anastasios & Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Enhancing model-based feedback perimeter control with data-driven online adaptive optimization," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 26-45.
    19. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Zhang, Mengping, 2015. "Reformulating the Hoogendoorn–Bovy predictive dynamic user-optimal model in continuum space with anisotropic condition," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 189-217.
    20. Haddad, Jack, 2017. "Optimal perimeter control synthesis for two urban regions with aggregate boundary queue dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 1-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:81:y:2015:i:p2:p:616-630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.