IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

An empirical analysis on the arterial fundamental diagram

Listed author(s):
  • Wu, Xinkai
  • Liu, Henry X.
  • Geroliminis, Nikolas
Registered author(s):

    For uninterrupted traffic flow, it is well-known that the fundamental diagram (FD) describes the relationship between traffic flow and density under steady state. For interrupted traffic flow on a signalized road, it has been recognized that the arterial fundamental diagram (AFD) is significantly affected by signal operations. But little research up to date has discussed in detail how signal operations impact the AFD. In this paper, based upon empirical observations from high-resolution event-based traffic signal data collected from a major arterial in the Twin Cities area, we study the impacts of g/C ratio, signal coordination, and turning movements on the cycle-based AFD, which describes the relationship between traffic flow and occupancy in a signal cycle. By microscopically investigating individual vehicle trajectories from event-based data, we demonstrate that not only g/C ratio constrains the capacity of a signalized approach, poor signal coordination and turning movements from upstream intersections also have significant impact on the capacity. We show that an arterial link may not be congested even with high occupancy values. Such high values could result from queue build-up during red light that occupies the detector, i.e. the Queue-Over-Detector (QOD) phenomenon discussed in this paper. More importantly, by removing the impact of QOD, a stable form of AFD is revealed, and one can use that to identify three different regimes including under-saturation, saturation, and over-saturation with queue spillovers. We believe the stable form of AFD is of great importance for traffic signal control because of its ability to identify traffic states on a signal link.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Transportation Research Part B: Methodological.

    Volume (Year): 45 (2011)
    Issue (Month): 1 (January)
    Pages: 255-266

    in new window

    Handle: RePEc:eee:transb:v:45:y:2011:i:1:p:255-266
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    2. Kerner, Boris S., 2004. "Three-phase traffic theory and highway capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 379-440.
    3. D. Helbing, 2009. "Derivation of a fundamental diagram for urban traffic flow," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(2), pages 229-241, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:1:p:255-266. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.