IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v71y2015icp138-157.html
   My bibliography  Save this article

Microscopic driving theory with oscillatory congested states: Model and empirical verification

Author

Listed:
  • Tian, Junfang
  • Treiber, Martin
  • Ma, Shoufeng
  • Jia, Bin
  • Zhang, Wenyi

Abstract

The essential distinction between the Fundamental Diagram Approach (FDA) and Kerner’s three-phase theory (KTPT) is the existence of a unique gap–speed (or flow–density) relationship in the former class. In order to verify this relationship, empirical data are analyzed with the following findings: (1) linear relationship between the actual space gap and speed can be identified when the speed difference between vehicles approximates zero; (2) vehicles accelerate or decelerate around the desired space gap most of the time. To explain these phenomena, we propose that, in congested traffic flow, the space gap between two vehicles will oscillate around the desired space gap in the deterministic limit. This assumption is formulated in terms of a cellular automaton. In contrast to FDA and KTPT, the new model does not have any congested steady-state solution. Simulations under periodic and open boundary conditions reproduce the empirical findings of KTPT. Calibrating and validating the model to detector data produces results that are better than that of previous studies.

Suggested Citation

  • Tian, Junfang & Treiber, Martin & Ma, Shoufeng & Jia, Bin & Zhang, Wenyi, 2015. "Microscopic driving theory with oscillatory congested states: Model and empirical verification," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 138-157.
  • Handle: RePEc:eee:transb:v:71:y:2015:i:c:p:138-157
    DOI: 10.1016/j.trb.2014.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261514001921
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2014.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xinkai & Liu, Henry X. & Geroliminis, Nikolas, 2011. "An empirical analysis on the arterial fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 255-266, January.
    2. D. Helbing & M. Treiber & A. Kesting & M. Schönhof, 2009. "Theoretical vs. empirical classification and prediction of congested traffic states," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 69(4), pages 583-598, June.
    3. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    4. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    5. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    6. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    7. Kerner, Boris S., 2013. "Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory: A brief review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5261-5282.
    8. Robert Herman & Elliott W. Montroll & Renfrey B. Potts & Richard W. Rothery, 1959. "Traffic Dynamics: Analysis of Stability in Car Following," Operations Research, INFORMS, vol. 7(1), pages 86-106, February.
    9. P. Wagner, 2006. "How human drivers control their vehicle," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 52(3), pages 427-431, August.
    10. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    11. Tian, Jun-fang & Jia, Bin & Li, Xin-gang & Jiang, Rui & Zhao, Xiao-mei & Gao, Zi-you, 2009. "Synchronized traffic flow simulating with cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(23), pages 4827-4837.
    12. Gao, Kun & Jiang, Rui & Wang, Bing-Hong & Wu, Qing-Song, 2009. "Discontinuous transition from free flow to synchronized flow induced by short-range interaction between vehicles in a three-phase traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3233-3243.
    13. R. Jiang & Q-S. Wu, 2005. "First order phase transition from free flow to synchronized flow in a cellular automata model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(4), pages 581-584, August.
    14. He, Shuyan & Guan, Wei & Song, Liying, 2010. "Explaining traffic patterns at on-ramp vicinity by a driver perception model in the framework of three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 825-836.
    15. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2010. "Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 983-1000, September.
    16. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    17. Wagner, Peter, 2012. "Analyzing fluctuations in car-following," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1384-1392.
    18. Tian, Jun-fang & Yuan, Zhen-zhou & Treiber, Martin & Jia, Bin & Zhang, Wen-yi, 2012. "Cellular automaton model within the fundamental-diagram approach reproducing some findings of the three-phase theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3129-3139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Junfang & Zhang, H.M. & Treiber, Martin & Jiang, Rui & Gao, Zi-You & Jia, Bin, 2019. "On the role of speed adaptation and spacing indifference in traffic instability: Evidence from car-following experiments and its stochastic model," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 334-350.
    2. Dewen Kong & Xiucheng Guo & Bo Yang & Dingxin Wu, 2016. "Analyzing the Impact of Trucks on Traffic Flow Based on an Improved Cellular Automaton Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-14, September.
    3. Fu, Ding-Jun & Li, Qi-Lang & Jiang, Rui & Wang, Bing-Hong, 2020. "A simple cellular automaton model with dual cruise-control limit in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    4. Tomoko Sakiyama & Ikuo Arizono, 2019. "Reversible Transitions in a Cellular Automata-Based Traffic Model with Driver Memory," Complexity, Hindawi, vol. 2019, pages 1-8, December.
    5. Zhang, Jing & Xu, Keyu & Li, Guangyao & Li, Shubin & Wang, Tao, 2021. "Dynamics of traffic flow affected by the future motion of multiple preceding vehicles under vehicle-connected environment: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    6. Huang, Wei & Hu, Yang, 2022. "A modified cell transmission model considering queuing characteristics for channelized zone at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    7. Tianjun Feng & Keyi Liu & Chunyan Liang, 2023. "An Improved Cellular Automata Traffic Flow Model Considering Driving Styles," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    8. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Modeling connected and autonomous vehicles in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 269-277.
    9. Kong, Dewen & Sun, Lishan & Li, Jia & Xu, Yan, 2021. "Modeling cars and trucks in the heterogeneous traffic based on car–truck combination effect using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    10. E. Ronchi & J. Wahlqvist & A. Ardinge & A. Rohaert & S. M. V. Gwynne & G. Rein & H. Mitchell & N. Kalogeropoulos & M. Kinateder & N. Bénichou & E. Kuligowski & A. Kimball, 2023. "The verification of wildland–urban interface fire evacuation models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1493-1519, June.
    11. Sheu, Jiuh-Biing & Wu, Hsi-Jen, 2015. "Driver perception uncertainty in perceived relative speed and reaction time in car following – A quantum optical flow perspective," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 257-274.
    12. Treiber, Martin & Kesting, Arne, 2018. "The Intelligent Driver Model with stochasticity – New insights into traffic flow oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 613-623.
    13. Wang, Zhengli & Jiang, Hai, 2019. "Simultaneous correction of the time and location bias associated with a reported crash by exploiting the spatiotemporal evolution of travel speed," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 199-223.
    14. Zhang, Jing & Wang, Bo & Li, Shubin & Sun, Tao & Wang, Tao, 2020. "Modeling and application analysis of car-following model with predictive headway variation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    15. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 588-597.
    16. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    17. Li, Yongfu & Zhao, Hang & Zhang, Li & Zhang, Chao, 2018. "An extended car-following model incorporating the effects of lateral gap and gradient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 177-189.
    18. Zhang, Jing & Xu, Keyu & Li, Shubin & Wang, Tao, 2020. "A new two-lane lattice hydrodynamic model with the introduction of driver’s predictive effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    19. Wang, Zhengli & Qi, Xin & Jiang, Hai, 2018. "Estimating the spatiotemporal impact of traffic incidents: An integer programming approach consistent with the propagation of shockwaves," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 356-369.
    20. Wang, Tao & Li, Guangyao & Zhang, Jing & Li, Shubin & Sun, Tao, 2019. "The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 566-575.
    21. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    22. Maosheng Li & Jing Fan & Jaeyoung Lee, 2023. "Modeling Car-Following Behavior with Different Acceptable Safety Levels," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    23. Sharma, Anshuman & Zheng, Zuduo & Bhaskar, Ashish & Haque, Md. Mazharul, 2019. "Modelling car-following behaviour of connected vehicles with a focus on driver compliance," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 256-279.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    2. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    3. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    4. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    5. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    6. Zhou, Fang & Li, Xiaopeng & Ma, Jiaqi, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 394-420.
    7. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    8. Tian, Junfang & Zhu, Chenqiang & Chen, Danjue & Jiang, Rui & Wang, Guanying & Gao, Ziyou, 2021. "Car following behavioral stochasticity analysis and modeling: Perspective from wave travel time," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 160-176.
    9. Yeo, Hwasoo, 2008. "Asymmetric Microscopic Driving Behavior Theory," University of California Transportation Center, Working Papers qt1tn1m968, University of California Transportation Center.
    10. Junfang Tian & Bin Jia & Shoufeng Ma & Chenqiang Zhu & Rui Jiang & YaoXian Ding, 2017. "Cellular Automaton Model with Dynamical 2D Speed-Gap Relation," Transportation Science, INFORMS, vol. 51(3), pages 807-822, August.
    11. Paipuri, Mahendra & Leclercq, Ludovic, 2020. "Bi-modal macroscopic traffic dynamics in a single region," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 257-290.
    12. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    13. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.
    14. Tian, Junfang & Jiang, Rui & Jia, Bin & Gao, Ziyou & Ma, Shoufeng, 2016. "Empirical analysis and simulation of the concave growth pattern of traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 338-354.
    15. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    16. Georgia Perakis & Guillaume Roels, 2006. "An Analytical Model for Traffic Delays and the Dynamic User Equilibrium Problem," Operations Research, INFORMS, vol. 54(6), pages 1151-1171, December.
    17. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    18. Yin, Ruyang & Zheng, Nan & Liu, Zhiyuan, 2022. "Estimating fundamental diagram for multi-modal signalized urban links with limited probe data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    19. Treiber, Martin & Kesting, Arne, 2011. "Evidence of convective instability in congested traffic flow: A systematic empirical and theoretical investigation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1362-1377.
    20. Hao, Peng & Ban, Xuegang, 2015. "Long queue estimation for signalized intersections using mobile data," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 54-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:71:y:2015:i:c:p:138-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.