IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v12y2017i1p75.html
   My bibliography  Save this article

Forward Modeling Time-Lapse Seismic based on Reservoir Simulation Result on The CCS Project at Gundih Field, Indonesia

Author

Listed:
  • Ariesty R. K. Asikin
  • Awali Priyono
  • Tutuka Ariadji
  • Benyamin Sapiie
  • Mohammad R. Sule
  • Takeshi Tsuji
  • Wawan Gunawan A. Kadir
  • Toshifumi Matsuoka
  • Sigit Rahardjo

Abstract

This paper contains reservoir simulation study of carbon storage at Gundih field in Central Java Island, Indonesia. Two different cases of injection simulation were performed and analyzed in this paper. The cases represent the conditions when the smallest and largest volumes of CO2areinjected into the subsurface to see the changes of reservoir that happen after the injection processes. The simulation result shows that when a larger amount of CO2 is injected into the targeted reservoir, it will migrate to the peak of anticline structure located in the southeast of CO2 injection well. The displacement of CO2 in the simulation progress shows that it will not reach the fault location. The geological model for synthetic seismogram calculation is then built based on the simulation reservoir result. The furthest displacement of CO2 is calculated on each case and described as the saturated CO2 layers. Forward modeling is performed to create synthetic seismic gather which will be processed to construct seismic section. The difference between the initial seismic section before the injection process and seismic section including saturated CO2 layer after the injection process will be evaluated by the potential of injected CO2 monitoring using time-lapse seismic survey in the Gundih field.

Suggested Citation

  • Ariesty R. K. Asikin & Awali Priyono & Tutuka Ariadji & Benyamin Sapiie & Mohammad R. Sule & Takeshi Tsuji & Wawan Gunawan A. Kadir & Toshifumi Matsuoka & Sigit Rahardjo, 2018. "Forward Modeling Time-Lapse Seismic based on Reservoir Simulation Result on The CCS Project at Gundih Field, Indonesia," Modern Applied Science, Canadian Center of Science and Education, vol. 12(1), pages 1-75, January.
  • Handle: RePEc:ibn:masjnl:v:12:y:2017:i:1:p:75
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/71934/39823
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/71934
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arts, R. & Eiken, O. & Chadwick, A. & Zweigel, P. & van der Meer, L. & Zinszner, B., 2004. "Monitoring of CO2 injected at Sleipner using time-lapse seismic data," Energy, Elsevier, vol. 29(9), pages 1383-1392.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud Ahmadinia & Seyed M. Shariatipour, 2021. "A study on the impact of storage boundary and caprock morphology on carbon sequestration in saline aquifers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 183-205, February.
    2. R. Andrew Chadwick & David J. Noy, 2015. "Underground CO2 storage: demonstrating regulatory conformance by convergence of history‐matched modeled and observed CO2 plume behavior using Sleipner time‐lapse seismics," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(3), pages 305-322, June.
    3. Kolditz, O. & Bauer, S. & Böttcher, N. & Elsworth, D. & Görke, U.-J. & McDermott, C.-I. & Park, C.-H. & Singh, A.K. & Taron, J. & Wang, W., 2012. "Numerical simulation of two-phase flow in deformable porous media: Application to carbon dioxide storage in the subsurface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(10), pages 1919-1935.
    4. Masoud Ahmadinia & Seyed M. Shariatipour, 2020. "Analysing the role of caprock morphology on history matching of Sleipner CO2 plume using an optimisation method," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1077-1097, October.
    5. Zhong, Jinjin & Jiang, Xi, 2017. "A case study of using cosmic ray muons to monitor supercritical CO2 migration in geological formations," Applied Energy, Elsevier, vol. 185(P2), pages 1450-1458.
    6. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    7. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    8. Li, Didi & He, Yao & Zhang, Hongcheng & Xu, Wenbin & Jiang, Xi, 2017. "A numerical study of the impurity effects on CO2 geological storage in layered formation," Applied Energy, Elsevier, vol. 199(C), pages 107-120.
    9. Seyyed A. Hosseini & Masoud Alfi, 2016. "Time‐lapse application of pressure transient analysis for monitoring compressible fluid leakage," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(3), pages 352-369, June.
    10. Jie Li & Zhonghe Pang, 2015. "Environmental isotopes in CO 2 geological sequestration," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 374-388, August.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:12:y:2017:i:1:p:75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.