IDEAS home Printed from https://ideas.repec.org/a/ibn/jsd123/v16y2023i4p135.html
   My bibliography  Save this article

Analysis of the Profile of the Greenhouse Gas Emissions in Brazil

Author

Listed:
  • Fabio de Oliveira Neves
  • Arlinda de Jesus Rodrigues Resende
  • Plinio Rodrigues dos Santos Filho
  • Breno Regis Santos

Abstract

The number of debates on sustainability and the emission of gases (GHG), that potentiate the greenhouse effect, have grown in recent years, mainly regarding structural changes in the organizational dynamics of society. Particularly in Brazil, which has an extensive territorial area and native vegetation, emission of greenhouse gases is responsible for harmful socio-environmental effects both externally and internally to the country. Thereby, this study aimed to characterize the GHG in Brazil and identify which sustainable factors influence GHG emissions and how these factors correlate with the variations in temperature between 1990 and 2022. For that, multiple linear regression models were used to develop the regression model and canonical correlation analysis to verify how the adjusted factors behaved with the temperature in this period. The results of this study show that the four adjusted indicators are of economic origin and closely related to the type of economic production in Brazil. Each indicator has a similar correlation with temperature variations. This GHG profile helps public decision makers gain an overview, particularly in relation to the drastic temperature changes and current weather conditions. It is expected that this work will have theoretical implications for a new line of research to be deepened, which can develop practices that allow public managers to plan how to reduce the greenhouse gases indicators analyzed in this research. Therefore this study can contribute as a research tool in the control of greenhouse gas emissions in Brazil.

Suggested Citation

  • Fabio de Oliveira Neves & Arlinda de Jesus Rodrigues Resende & Plinio Rodrigues dos Santos Filho & Breno Regis Santos, 2023. "Analysis of the Profile of the Greenhouse Gas Emissions in Brazil," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 16(4), pages 135-135, July.
  • Handle: RePEc:ibn:jsd123:v:16:y:2023:i:4:p:135
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jsd/article/download/0/0/49037/52873
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jsd/article/view/0/49037
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    2. R. M. B. Harris & L. J. Beaumont & T. R. Vance & C. R. Tozer & T. A. Remenyi & S. E. Perkins-Kirkpatrick & P. J. Mitchell & A. B. Nicotra & S. McGregor & N. R. Andrew & M. Letnic & M. R. Kearney & T. , 2018. "Author Correction: Biological responses to the press and pulse of climate trends and extreme events," Nature Climate Change, Nature, vol. 8(9), pages 840-840, September.
    3. R. M. B. Harris & L. J. Beaumont & T. R. Vance & C. R. Tozer & T. A. Remenyi & S. E. Perkins-Kirkpatrick & P. J. Mitchell & A. B. Nicotra & S. McGregor & N. R. Andrew & M. Letnic & M. R. Kearney & T. , 2018. "Biological responses to the press and pulse of climate trends and extreme events," Nature Climate Change, Nature, vol. 8(7), pages 579-587, July.
    4. João Marcelo Pereira Ribeiro & Issa Ibrahim Berchin & Samara da Silva Neiva & Thiago Soares & Celso Lopes de Albuquerque Junior & André Borchardt Deggau & Wellyngton Silva de Amorim & Samuel Borges Ba, 2021. "Food stability model: A framework to support decision‐making in a context of climate change," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 13-24, January.
    5. Kevin A. Reed & Michael F. Wehner & Colin M. Zarzycki, 2022. "Attribution of 2020 hurricane season extreme rainfall to human-induced climate change," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    6. Kevin A. Reed & Michael F. Wehner & Colin M. Zarzycki, 2022. "Author Correction: Attribution of 2020 hurricane season extreme rainfall to human-induced climate change," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    7. Fujii, Hidemichi & Managi, Shunsuke, 2015. "Optimal production resource reallocation for CO2 emissions reduction in manufacturing sectors," MPRA Paper 64703, University Library of Munich, Germany.
    8. Tiago T.S. Siqueira & Michel Duru, 2016. "Economics and environmental performance issues of a typical Amazonian beef farm: a case study," Post-Print hal-01301283, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavallo, Eduardo A. & Gómez, Santiago & Noy, Ilan & Strobl, Eric, 2024. "Climate Change, Hurricanes, and Sovereign Debt in the Caribbean Basin," IDB Publications (Working Papers) 13351, Inter-American Development Bank.
    2. Adrian C. Newton, 2021. "Strengthening the Scientific Basis of Ecosystem Collapse Risk Assessments," Land, MDPI, vol. 10(11), pages 1-15, November.
    3. Suzanne M Prober & Nat Raisbeck-Brown & Natasha B Porter & Kristen J Williams & Zoe Leviston & Fiona Dickson, 2019. "Recent climate-driven ecological change across a continent as perceived through local ecological knowledge," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-30, November.
    4. Qian Zhou & Feng Gui & Benxuan Zhao & Jingyi Liu & Huiwen Cai & Kaida Xu & Sheng Zhao, 2024. "Examining the Social Costs of Carbon Emissions and the Ecosystem Service Value in Island Ecosystems: An Analysis of the Zhoushan Archipelago," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    5. Carlos Sanz-Lazaro, 2019. "A Framework to Advance the Understanding of the Ecological Effects of Extreme Climate Events," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    6. Dominika Czyz & Karolina Safarzynska, 2023. "Catastrophic Damages and the Optimal Carbon Tax Under Loss Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(2), pages 303-340, June.
    7. Dafermos, Yannis & Nikolaidi, Maria, 2022. "Assessing climate policies: an ecological stock–flow consistent perspective," Greenwich Papers in Political Economy 38039, University of Greenwich, Greenwich Political Economy Research Centre.
    8. Torres-Brito, David Israel & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2023. "Impacto de los contaminantes por gases de efecto invernadero en el crecimiento económico en 86 países (1990-2019): Sobre la curva inversa de Kuznets [Impact of the Effect of Greenhouse Gas Pollutan," MPRA Paper 119031, University Library of Munich, Germany.
    9. Rakesh Kumar Jain & Surender Kumar, 2018. "Shadow price of CO2 emissions in Indian thermal power sector," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 879-902, October.
    10. Zhicong Zhang & Hao Xie & Jubing Zhang & Xinye Wang & Jiayu Wei & Xibin Quan, 2022. "Prediction and Trend Analysis of Regional Industrial Carbon Emission in China: A Study of Nanjing City," IJERPH, MDPI, vol. 19(12), pages 1-23, June.
    11. Alexey Mikhaylov & Nikita Moiseev & Kirill Aleshin & Thomas Burkhardt, 2020. "Global climate change and greenhouse effect," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(4), pages 2897-2913, June.
    12. Krekel, Christian & Zerrahn, Alexander, 2017. "Does the presence of wind turbines have negative externalities for people in their surroundings? Evidence from well-being data," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 221-238.
    13. Zaiwu Gong & Xiaoqing Chen, 2017. "Analysis of Interval Data Envelopment Efficiency Model Considering Different Distribution Characteristics—Based on Environmental Performance Evaluation of the Manufacturing Industry," Sustainability, MDPI, vol. 9(12), pages 1-25, November.
    14. Koji Kotani & Makoto Kakinaka, 2017. "Some implications of environmental regulation on social welfare under learning-by-doing of eco-products," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(1), pages 121-149, January.
    15. Fukuyama, Hirofumi & Liu, Hui-hui & Song, Yao-yao & Yang, Guo-liang, 2021. "Measuring the capacity utilization of the 48 largest iron and steel enterprises in China," European Journal of Operational Research, Elsevier, vol. 288(2), pages 648-665.
    16. Al Ayoubi, Khalil & Enjolras, Geoffroy, 2022. "Does disinvestment from fossil fuels reduce the financial performance of responsible sovereign wealth funds?," Journal of Multinational Financial Management, Elsevier, vol. 64(C).
    17. Surender Kumar & Rakesh Kumar Jain, 2021. "Cost of CO2 emission mitigation and its decomposition: evidence from coal-fired thermal power sector in India," Empirical Economics, Springer, vol. 61(2), pages 693-717, August.
    18. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    19. Hidemichi Fujii & A. George Assaf & Shunsuke Managi & Roman Matousek, 2016. "Did the financial crisis affect environmental efficiency? evidence from the Japanese manufacturing sector," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(2), pages 159-168, April.
    20. Valeria Costantini & Anil Markandya & Elena Paglialunga & Giorgia Sforna, 2018. "Impact and distribution of climatic damages: a methodological proposal with a dynamic CGE model applied to global climate negotiations," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(3), pages 809-843, December.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jsd123:v:16:y:2023:i:4:p:135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.