IDEAS home Printed from
   My bibliography  Save this article

How Does Climate Policy Affect Technical Change? An Analysis of the Direction and Pace of Technical Progress in a Climate-Economy Model


  • Carlo Carraro, Emanuele Massetti, Lea Nicita


This paper analyses whether and how a climate policy designed to stabilize greenhouse gases in the atmosphere is likely to change the direction and pace of technical progress. The analysis is performed using an upgraded version of WITCH, a dynamic integrated regional model of the world economy. In this version, a non-energy R&D Sector, which enhances the productivity of the capital-labor aggregate, has been added to the energy R&D sector included in the original WITCH model. We find that, as a consequence of climate policy, R&D is re-directed towards energy knowledge. Nonetheless, total R&D investments decrease, due to a more than proportional contraction of non-energy R&D. Indeed, when non-energy and energy inputs are weakly substitutable, the overall contraction of the economic activity associated with a climate policy induces a decline in total R&D investments. However, enhanced investments in energy R&D and in the energy sector are found not to “crowd-out” investments in non-energy R&D.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Carlo Carraro, Emanuele Massetti, Lea Nicita, 2009. "How Does Climate Policy Affect Technical Change? An Analysis of the Direction and Pace of Technical Progress in a Climate-Economy Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
  • Handle: RePEc:aen:journl:2009se-climate-change-a02

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Tooraj Jamasb, 2007. "Technical Change Theory and Learning Curves: Patterns of Progress in Electricity Generation Technologies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 51-72.
    2. van der Zwaan, Bob & Rabl, Ari, 2004. "The learning potential of photovoltaics: implications for energy policy," Energy Policy, Elsevier, vol. 32(13), pages 1545-1554, September.
    3. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    4. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    5. Duke, Richard & Williams, Robert & Payne, Adam, 2005. "Accelerating residential PV expansion: demand analysis for competitive electricity markets," Energy Policy, Elsevier, vol. 33(15), pages 1912-1929, October.
    6. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    7. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    8. Goulder Lawrence H., 1995. "Effects of Carbon Taxes in an Economy with Prior Tax Distortions: An Intertemporal General Equilibrium Analysis," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages 271-297, November.
    9. Papineau, Maya, 2006. "An economic perspective on experience curves and dynamic economies in renewable energy technologies," Energy Policy, Elsevier, vol. 34(4), pages 422-432, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    2. Joshua S. Gans, 2012. "Innovation and Climate Change Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(4), pages 125-145, November.
    3. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    4. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2017. "Energy biased technology change: Focused on Chinese energy-intensive industries," Applied Energy, Elsevier, vol. 190(C), pages 1081-1089.
    5. Emanuele Massetti & Lea Nicita, 2010. "The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors," CESifo Working Paper Series 2988, CESifo Group Munich.
    6. Carraro, Carlo & De Cian, Enrica & Tavoni, Massimo, 2012. "Human Capital, Innovation, and Climate Policy: An Integrated Assessment," CEPR Discussion Papers 8919, C.E.P.R. Discussion Papers.
    7. Stefania Lovo & Michael Gasiorek & Richard Tol, 2014. "Investment in second-hand capital goods and energy intensity," GRI Working Papers 163, Grantham Research Institute on Climate Change and the Environment.
    8. Everett, Tim & Ishwaran, Mallika & Ansaloni, Gian Paolo & Rubin, Alex, 2010. "Economic growth and the environment," MPRA Paper 23585, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • F0 - International Economics - - General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:2009se-climate-change-a02. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Williams). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.