IDEAS home Printed from https://ideas.repec.org/a/ibn/ijefaa/v14y2022i7p55.html
   My bibliography  Save this article

Forecasting Oil Prices: A Comparative Study

Author

Listed:
  • Jihad El Hokayem
  • Joseph Gemayel
  • Dany Mezher

Abstract

Oil prices have been a major concern for many policy makers, businesses and individuals throughout the years. The spillover of inflation, which is at its highest level since several decades, due to the supply chain problems and spike in energy prices, following the war between Russia and Ukraine pushed oil and gas under the spotlight recognizing its crucial role. In turn, this has imposed many challenges on numerous countries across regions building up feelings of fear and anxiety amid serious concerns about energy and food security. Forecasting oil prices is still a major challenge as it is stimulated by various influencers. With the availability of numerous techniques to forecast oil prices, this study aims to use multiple linear regressions which include the Vector Autoregression (VAR), Autoregressive Conditional Heteroskedasticity (ARCH) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models in order to attempt coming out with decent models that can help in forecasting oil prices and estimating their volatility.

Suggested Citation

  • Jihad El Hokayem & Joseph Gemayel & Dany Mezher, 2022. "Forecasting Oil Prices: A Comparative Study," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 14(7), pages 1-55, July.
  • Handle: RePEc:ibn:ijefaa:v:14:y:2022:i:7:p:55
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/ijef/article/download/0/0/47433/50849
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/ijef/article/view/0/47433
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salisu, Afees A. & Fasanya, Ismail O., 2013. "Modelling oil price volatility with structural breaks," Energy Policy, Elsevier, vol. 52(C), pages 554-562.
    2. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    3. Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
    4. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    5. Jaehyung An & Alexey Mikhaylov & Nikita Moiseev, 2019. "Oil Price Predictors: Machine Learning Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    2. Lu, Quanying & Li, Yuze & Chai, Jian & Wang, Shouyang, 2020. "Crude oil price analysis and forecasting: A perspective of “new triangle”," Energy Economics, Elsevier, vol. 87(C).
    3. Manickavasagam, Jeevananthan & Visalakshmi, S. & Apergis, Nicholas, 2020. "A novel hybrid approach to forecast crude oil futures using intraday data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    4. Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.
    5. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    6. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    7. Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2022. "Exploring the Trend of Commodity Prices: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    8. Yuanrong Wang & Yinsen Miao & Alexander CY Wong & Nikita P Granger & Christian Michler, 2023. "Domain-adapted Learning and Interpretability: DRL for Gas Trading," Papers 2301.08359, arXiv.org, revised Sep 2023.
    9. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    10. Mushtaq Hussain Khan & Junaid Ahmed & Mazhar Mughal & Imtiaz Hussain Khan, 2023. "Oil price volatility and stock returns: Evidence from three oil‐price wars," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3162-3182, July.
    11. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    12. Bissoondoyal-Bheenick, Emawtee & Brooks, Robert & Do, Hung Xuan & Smyth, Russell, 2020. "Exploiting the heteroskedasticity in measurement error to improve volatility predictions in oil and biofuel feedstock markets," Energy Economics, Elsevier, vol. 86(C).
    13. Yue-Jun Zhang & Han Zhang & Rangan Gupta, 2023. "A new hybrid method with data-characteristic-driven analysis for artificial intelligence and robotics index return forecasting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    14. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    15. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    16. Chai, Jian & Xing, Li-Min & Zhou, Xiao-Yang & Zhang, Zhe George & Li, Jie-Xun, 2018. "Forecasting the WTI crude oil price by a hybrid-refined method," Energy Economics, Elsevier, vol. 71(C), pages 114-127.
    17. Indranil Ghosh & Manas K. Sanyal & R. K. Jana, 2021. "Co-movement and Dynamic Correlation of Financial and Energy Markets: An Integrated Framework of Nonlinear Dynamics, Wavelet Analysis and DCC-GARCH," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 503-527, February.
    18. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    19. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    20. Zavadska, Miroslava & Morales, Lucía & Coughlan, Joseph, 2020. "Brent crude oil prices volatility during major crises," Finance Research Letters, Elsevier, vol. 32(C).

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijefaa:v:14:y:2022:i:7:p:55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.