IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1306039.html
   My bibliography  Save this article

A Systematic Review of Deep Learning Approaches to Educational Data Mining

Author

Listed:
  • Antonio Hernández-Blanco
  • Boris Herrera-Flores
  • David Tomás
  • Borja Navarro-Colorado

Abstract

Educational Data Mining (EDM) is a research field that focuses on the application of data mining, machine learning, and statistical methods to detect patterns in large collections of educational data. Different machine learning techniques have been applied in this field over the years, but it has been recently that Deep Learning has gained increasing attention in the educational domain. Deep Learning is a machine learning method based on neural network architectures with multiple layers of processing units, which has been successfully applied to a broad set of problems in the areas of image recognition and natural language processing. This paper surveys the research carried out in Deep Learning techniques applied to EDM, from its origins to the present day. The main goals of this study are to identify the EDM tasks that have benefited from Deep Learning and those that are pending to be explored, to describe the main datasets used, to provide an overview of the key concepts, main architectures, and configurations of Deep Learning and its applications to EDM, and to discuss current state-of-the-art and future directions on this area of research.

Suggested Citation

  • Antonio Hernández-Blanco & Boris Herrera-Flores & David Tomás & Borja Navarro-Colorado, 2019. "A Systematic Review of Deep Learning Approaches to Educational Data Mining," Complexity, Hindawi, vol. 2019, pages 1-22, May.
  • Handle: RePEc:hin:complx:1306039
    DOI: 10.1155/2019/1306039
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/1306039.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/1306039.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1306039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bolton, Roger E. & Jackson, Randall W. & West, Guy R., 1989. "Introduction," Socio-Economic Planning Sciences, Elsevier, vol. 23(5), pages 237-240.
    2. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renza Campagni & Donatella Merlini & Maria Cecilia Verri, 2022. "Analysing Computer Science Courses over Time," Data, MDPI, vol. 7(2), pages 1-15, January.
    2. Aras Bozkurt & Abdulkadir Karadeniz & David Baneres & Ana Elena Guerrero-Roldán & M. Elena Rodríguez, 2021. "Artificial Intelligence and Reflections from Educational Landscape: A Review of AI Studies in Half a Century," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    3. Tieyuan Liu & Chang Wang & Liang Chang & Tianlong Gu, 2022. "Predicting High-Risk Students Using Learning Behavior," Mathematics, MDPI, vol. 10(14), pages 1-15, July.
    4. Kaknjo Arnela & Turulja Lejla, 2025. "The KDD Process in Big Data Analytics: A Theoretical Approach to Taxpayer Non-Compliance Analysis," Journal of Forensic Accounting Profession, Sciendo, vol. 5(1), pages 16-42.
    5. Hülya Yürekli & Öyküm Esra Yiğit & Okan Bulut & Min Lu & Ersoy Öz, 2022. "Exploring Factors That Affected Student Well-Being during the COVID-19 Pandemic: A Comparison of Data-Mining Approaches," IJERPH, MDPI, vol. 19(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Hu & Jiaxi Li & Shuang Li & Jie Yang, 2019. "A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR," Energies, MDPI, vol. 12(19), pages 1-15, September.
    2. Tian Zhu & Merry H. Ma, 2022. "Deriving the Optimal Strategy for the Two Dice Pig Game via Reinforcement Learning," Stats, MDPI, vol. 5(3), pages 1-14, August.
    3. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    4. Carla Castañeda, 2009. "How Liberal Peacebuilding May Be Failing Sierra Leone," Review of African Political Economy, Taylor & Francis Journals, vol. 36(120), pages 235-251, June.
    5. Pedro Afonso Fernandes, 2024. "Forecasting with Neuro-Dynamic Programming," Papers 2404.03737, arXiv.org.
    6. repec:cdl:itsdav:qt2fv5063b is not listed on IDEAS
    7. Guangyuan Li & Baobao Song & Harinder Singh & V. B. Surya Prasath & H. Leighton Grimes & Nathan Salomonis, 2023. "Decision level integration of unimodal and multimodal single cell data with scTriangulate," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Tambet Matiisen & Aqeel Labash & Daniel Majoral & Jaan Aru & Raul Vicente, 2022. "Do Deep Reinforcement Learning Agents Model Intentions?," Stats, MDPI, vol. 6(1), pages 1-17, December.
    9. Nathan Companez & Aldeida Aleti, 2016. "Can Monte-Carlo Tree Search learn to sacrifice?," Journal of Heuristics, Springer, vol. 22(6), pages 783-813, December.
    10. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    11. Benjamin Heinbach & Peter Burggräf & Johannes Wagner, 2024. "gym-flp: A Python Package for Training Reinforcement Learning Algorithms on Facility Layout Problems," SN Operations Research Forum, Springer, vol. 5(1), pages 1-26, March.
    12. Zhang, Yiwen & Ren, Yifan & Liu, Ziyun & Li, Haoqin & Jiang, Huaiguang & Xue, Ying & Ou, Junhui & Hu, Renzong & Zhang, Jun & Gao, David Wenzhong, 2025. "Federated deep reinforcement learning for varying-scale multi-energy microgrids energy management considering comprehensive security," Applied Energy, Elsevier, vol. 380(C).
    13. Elsisi, Mahmoud & Amer, Mohammed & Dababat, Alya’ & Su, Chun-Lien, 2023. "A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation," Energy, Elsevier, vol. 281(C).
    14. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    15. Biemann, Marco & Scheller, Fabian & Liu, Xiufeng & Huang, Lizhen, 2021. "Experimental evaluation of model-free reinforcement learning algorithms for continuous HVAC control," Applied Energy, Elsevier, vol. 298(C).
    16. Zhewei Zhang & Youngjin Yoo & Kalle Lyytinen & Aron Lindberg, 2021. "The Unknowability of Autonomous Tools and the Liminal Experience of Their Use," Information Systems Research, INFORMS, vol. 32(4), pages 1192-1213, December.
    17. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    18. JinHyo Joseph Yun & EuiSeob Jeong & Xiaofei Zhao & Sung Deuk Hahm & KyungHun Kim, 2019. "Collective Intelligence: An Emerging World in Open Innovation," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    19. Zeqing Jin & Dahyun Daniel Lim & Xueying Zhao & Meenakshi Mamunuru & Sassan Roham & Grace X. Gu, 2024. "Machine learning enabled optimization of showerhead design for semiconductor deposition process," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 925-935, February.
    20. repec:osf:osfxxx:tn5rx_v1 is not listed on IDEAS
    21. Jiacheng Zhang & Haolan Zhang, 2025. "Towards Human-like Artificial Intelligence: A Review of Anthropomorphic Computing in AI and Future Trends," Mathematics, MDPI, vol. 13(13), pages 1-49, June.
    22. Brini, Alessio & Tantari, Daniele, 2023. "Deep reinforcement trading with predictable returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1306039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.