IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i2d10.1007_s10845-023-02082-8.html
   My bibliography  Save this article

Machine learning enabled optimization of showerhead design for semiconductor deposition process

Author

Listed:
  • Zeqing Jin

    (University of California)

  • Dahyun Daniel Lim

    (University of California)

  • Xueying Zhao

    (Lam Research Corporation)

  • Meenakshi Mamunuru

    (Lam Research Corporation)

  • Sassan Roham

    (Lam Research Corporation)

  • Grace X. Gu

    (University of California)

Abstract

In semiconductor fabrication, the deposition process generates layers of materials to realize insulating and conducting functionality. The uniformity of the deposited thin film layers’ thickness is crucial to create high-performance semiconductor devices. Tuning fabrication process parameters (e.g., for evenly distributed gas flow on the semiconductor wafer) is one of the dominant factors that affect film uniformity, as evidenced by both experimental and numerical studies. Conventional trial and error methods employed to change and test a range of fabrication conditions are time-consuming, and few studies have explored the effect of changing the geometry of hardware components, such as the showerhead. Here, we present a design optimization of the showerhead for flow uniformity based on numerical simulation data using machine learning surrogate models. Accurate machine learning models and optimization algorithms are developed and implemented to achieve 10% more flow uniformity compared to a benchmark traditional showerhead design. Moreover, the developed Bayesian optimization method saves 10-fold computational cost in reaching the optimal showerhead designs compared to conventional approaches. This machine learning enabled optimization platform shows promising results which could be implemented for other optimization problems in various manufacturing systems such as semiconductor fabrication and additive manufacturing.

Suggested Citation

  • Zeqing Jin & Dahyun Daniel Lim & Xueying Zhao & Meenakshi Mamunuru & Sassan Roham & Grace X. Gu, 2024. "Machine learning enabled optimization of showerhead design for semiconductor deposition process," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 925-935, February.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-023-02082-8
    DOI: 10.1007/s10845-023-02082-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02082-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02082-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-023-02082-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.