IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i4d10.1007_s10845-023-02113-4.html
   My bibliography  Save this article

A fast spatio-temporal temperature predictor for vacuum assisted resin infusion molding process based on deep machine learning modeling

Author

Listed:
  • Runyu Zhang

    (The University of Texas at Dallas)

  • Yingjian Liu

    (The University of Texas at Dallas)

  • Thomas Zheng

    (Texas A&M University)

  • Sarah Eddin

    (The University of North Carolina at Charlotte)

  • Steven Nolet

    (TPI Composites, Inc.)

  • Yi-Ling Liang

    (Olin™ EPOXY)

  • Shaghayegh Rezazadeh

    (TPI Composites, Inc.)

  • Joseph Wilson

    (TPI Composites, Inc.)

  • Hongbing Lu

    (The University of Texas at Dallas)

  • Dong Qian

    (The University of Texas at Dallas)

Abstract

The manufacture of large wind turbine blades requires well-controlled processing conditions to prevent defect formation and thus produce high-quality composite blades. While the physics-based models provide accurate computational capabilities for the resin infusion and curing process for the glass fiber composites, they suffer from high computational costs, making them infeasible for fast optimization computation and process control during manufacturing. In light of the limitations, we describe a machine learning (ML) approach that employs a deep convolutional and recurrent neural network model to predict the spatio-temporal temperature distribution during the vacuum assisted resin infusion molding (VARIM) process. The ML model is trained with the “big data” generated from the physics-based high-fidelity simulations. Once fully trained, it serves as a digital twin of the blade manufacturing process. Validation is made by comparing simulation results with experimental data on a unidirectional glass fiber composite laminate plate (44 plies, 2 m long and 0.5 m wide). The trained and validated ML model is then extended to evaluate the role of critical VARIM processing parameters on temperature distribution. With the predictive accuracy of 94%, at over 100 times faster computational speed than the physics-based simulations, the ML approach established herein provides a general framework for a digital twin for temperature distribution in the composite manufacturing process.

Suggested Citation

  • Runyu Zhang & Yingjian Liu & Thomas Zheng & Sarah Eddin & Steven Nolet & Yi-Ling Liang & Shaghayegh Rezazadeh & Joseph Wilson & Hongbing Lu & Dong Qian, 2024. "A fast spatio-temporal temperature predictor for vacuum assisted resin infusion molding process based on deep machine learning modeling," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1737-1764, April.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:4:d:10.1007_s10845-023-02113-4
    DOI: 10.1007/s10845-023-02113-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02113-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02113-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    3. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    4. Andrew Kusiak, 2017. "Smart manufacturing must embrace big data," Nature, Nature, vol. 544(7648), pages 23-25, April.
    5. Peter R. Wurman & Samuel Barrett & Kenta Kawamoto & James MacGlashan & Kaushik Subramanian & Thomas J. Walsh & Roberto Capobianco & Alisa Devlic & Franziska Eckert & Florian Fuchs & Leilani Gilpin & P, 2022. "Outracing champion Gran Turismo drivers with deep reinforcement learning," Nature, Nature, vol. 602(7896), pages 223-228, February.
    6. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    7. Martin Szarski & Sunita Chauhan, 2023. "Instant flow distribution network optimization in liquid composite molding using deep reinforcement learning," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 197-218, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenchong Mo & Lin Gong & Mingren Zhu & Junde Lan, 2024. "The Generative Generic-Field Design Method Based on Design Cognition and Knowledge Reasoning," Sustainability, MDPI, vol. 16(22), pages 1-34, November.
    2. Cui, Tianxiang & Du, Nanjiang & Yang, Xiaoying & Ding, Shusheng, 2024. "Multi-period portfolio optimization using a deep reinforcement learning hyper-heuristic approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    3. Yang, Kaiyuan & Huang, Houjing & Vandans, Olafs & Murali, Adithya & Tian, Fujia & Yap, Roland H.C. & Dai, Liang, 2023. "Applying deep reinforcement learning to the HP model for protein structure prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    4. Patrick Bryant & Gabriele Pozzati & Wensi Zhu & Aditi Shenoy & Petras Kundrotas & Arne Elofsson, 2022. "Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Zihao Cui & Kailian Deng & Hongtao Zhang & Zhongyi Zha & Sayed Jobaer, 2025. "Deep Reinforcement Learning-Based Multi-Agent System with Advanced Actor–Critic Framework for Complex Environment," Mathematics, MDPI, vol. 13(5), pages 1-22, February.
    6. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Sun-Ting Tsai & Eric Fields & Yijia Xu & En-Jui Kuo & Pratyush Tiwary, 2022. "Path sampling of recurrent neural networks by incorporating known physics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Wanyang Dai, 2024. "Stochastic Differential Games and a Unified Forward–Backward Coupled Stochastic Partial Differential Equation with Lévy Jumps," Mathematics, MDPI, vol. 12(18), pages 1-46, September.
    9. Minkyu Shin & Jin Kim & Bas van Opheusden & Thomas L. Griffiths, 2023. "Superhuman Artificial Intelligence Can Improve Human Decision Making by Increasing Novelty," Papers 2303.07462, arXiv.org, revised Apr 2023.
    10. Zeqing Jin & Dahyun Daniel Lim & Xueying Zhao & Meenakshi Mamunuru & Sassan Roham & Grace X. Gu, 2024. "Machine learning enabled optimization of showerhead design for semiconductor deposition process," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 925-935, February.
    11. Min Yan & Can Huang & Peter Bienstman & Peter Tino & Wei Lin & Jie Sun, 2024. "Emerging opportunities and challenges for the future of reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Matt C. Danzi & Maike F. Dohrn & Sarah Fazal & Danique Beijer & Adriana P. Rebelo & Vivian Cintra & Stephan Züchner, 2023. "Deep structured learning for variant prioritization in Mendelian diseases," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Xiaoxuan Pan & Zhide Lu & Weiting Wang & Ziyue Hua & Yifang Xu & Weikang Li & Weizhou Cai & Xuegang Li & Haiyan Wang & Yi-Pu Song & Chang-Ling Zou & Dong-Ling Deng & Luyan Sun, 2023. "Deep quantum neural networks on a superconducting processor," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Pantelis Livanos & Choy Kriechbaum & Sophia Remers & Arvid Herrmann & Sabine Müller, 2025. "Kinesin-12 POK2 polarization is a prerequisite for a fully functional division site and aids cell plate positioning," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    17. Tian Zhu & Merry H. Ma, 2022. "Deriving the Optimal Strategy for the Two Dice Pig Game via Reinforcement Learning," Stats, MDPI, vol. 5(3), pages 1-14, August.
    18. Surabhi Kokane & Ashutosh Gulati & Pascal F. Meier & Rei Matsuoka & Tanadet Pipatpolkai & Giuseppe Albano & Tin Manh Ho & Lucie Delemotte & Daniel Fuster & David Drew, 2025. "PIP2-mediated oligomerization of the endosomal sodium/proton exchanger NHE9," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    19. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative Artificial Intelligence," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, pages 7-46, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:4:d:10.1007_s10845-023-02113-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.