IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i9p1615-d111596.html
   My bibliography  Save this article

Economic, Environmental, and Animal Welfare Performance on Livestock Farms: Conceptual Model and Application to Some Case Studies in Italy

Author

Listed:
  • Francesco Galioto

    (Department of Agricultural Sciences, University of Bologna, Via Zamboni, 33, 40126 Bologna, Italy)

  • Chiara Paffarini

    (Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06126 Perugia, Italy)

  • Massimo Chiorri

    (Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06126 Perugia, Italy)

  • Biancamaria Torquati

    (Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06126 Perugia, Italy)

  • Lucio Cecchini

    (Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06126 Perugia, Italy)

Abstract

The aim of this paper is to propose a multi-attribute hierarchical evaluation model for the evaluation of the aggregate sustainability of livestock farms integrating the economic, environmental, and social aspects. This approach uses an aggregation criterion based on the geometric mean to assess a farm’s current level of sustainability. Sustainability was measured through the use of indicators including carbon footprint, farm income, and animal welfare. Secondly, based on the relationships between the sustainability aspects, the effects of improvement measures on all the indicators were estimated. This paper presents eight livestock case studies from Italy, analyzed in 2014. The results show intermediate values for the aggregate index of sustainability for most of the farms. The index mainly depends on the estimated values of the sustainability indicators related to the economic and environmental aspects. Lower values of animal welfare sustainability are quantified. The introduction of improvement measures in relation to the preparation of the soil had positive effects, both in terms of emissions and animal welfare. The increase of available space per Livestock Unit (LU) resulted in the greatest positive effect on animal welfare, among all the other actions analyzed.

Suggested Citation

  • Francesco Galioto & Chiara Paffarini & Massimo Chiorri & Biancamaria Torquati & Lucio Cecchini, 2017. "Economic, Environmental, and Animal Welfare Performance on Livestock Farms: Conceptual Model and Application to Some Case Studies in Italy," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1615-:d:111596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/9/1615/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/9/1615/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Calker, K.J. & Berentsen, P.B.M. & Romero, C. & Giesen, G.W.J. & Huirne, R.B.M., 2006. "Development and application of a multi-attribute sustainability function for Dutch dairy farming systems," Ecological Economics, Elsevier, vol. 57(4), pages 640-658, June.
    2. Martin Weber & Franz Eisenführ & Detlof von Winterfeldt, 1988. "The Effects of Splitting Attributes on Weights in Multiattribute Utility Measurement," Management Science, INFORMS, vol. 34(4), pages 431-445, April.
    3. Kingwell, R., 2002. "Sheep animal welfare in a low rainfall Mediterranean environment: a profitable investment?," Agricultural Systems, Elsevier, vol. 74(2), pages 221-240, November.
    4. van Calker, K.J. & Berentsen, P.B.M. & Giesen, G.W.J. & Huirne, R.B.M., 2008. "Maximising sustainability of Dutch dairy farming systems for different stakeholders: A modelling approach," Ecological Economics, Elsevier, vol. 65(2), pages 407-419, April.
    5. Klaas Calker & Paul Berentsen & Gerard Giesen & Ruud Huirne, 2005. "Identifying and ranking attributes that determine sustainability in Dutch dairy farming," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 22(1), pages 53-63, March.
    6. Franco, Juan Agustín & Gaspar, Paula & Mesias, Francisco Javier, 2012. "Economic analysis of scenarios for the sustainability of extensive livestock farming in Spain under the CAP," Ecological Economics, Elsevier, vol. 74(C), pages 120-129.
    7. Tello, E. & Galán, E. & Sacristán, V. & Cunfer, G. & Guzmán, G.I. & González de Molina, M. & Krausmann, F. & Gingrich, S. & Padró, R. & Marco, I. & Moreno-Delgado, D., 2016. "Opening the black box of energy throughputs in farm systems: A decomposition analysis between the energy returns to external inputs, internal biomass reuses and total inputs consumed (the Vallès Count," Ecological Economics, Elsevier, vol. 121(C), pages 160-174.
    8. Thomassen, M.A. & Dolman, M.A. & van Calker, K.J. & de Boer, I.J.M., 2009. "Relating life cycle assessment indicators to gross value added for Dutch dairy farms," Ecological Economics, Elsevier, vol. 68(8-9), pages 2278-2284, June.
    9. Cropper, Maureen L & Oates, Wallace E, 1992. "Environmental Economics: A Survey," Journal of Economic Literature, American Economic Association, vol. 30(2), pages 675-740, June.
    10. Oudshoorn, Frank W. & Sørensen, Claus Aage G. & de Boer, Imke I.J.M., 2011. "Economic and environmental evaluation of three goal-vision based scenarios for organic dairy farming in Denmark," Agricultural Systems, Elsevier, vol. 104(4), pages 315-325, April.
    11. Vinnari, Markus & Tapio, Petri, 2012. "Sustainability of diets: From concepts to governance," Ecological Economics, Elsevier, vol. 74(C), pages 46-54.
    12. Lovett, D.K. & Shalloo, L. & Dillon, P. & O'Mara, F.P., 2006. "A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime," Agricultural Systems, Elsevier, vol. 88(2-3), pages 156-179, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xabier Díaz de Otálora & Agustín del Prado & Federico Dragoni & Fernando Estellés & Barbara Amon, 2021. "Evaluating Three-Pillar Sustainability Modelling Approaches for Dairy Cattle Production Systems," Sustainability, MDPI, vol. 13(11), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van der Meulen, H.A.B. & Dolman, M.A. & Jager, J.H. & Venema, G.S., 2014. "The impact of farm size on sustainability of Dutch dairy farms," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 3(2), pages 1-5, January.
    2. Gloria P. Rios & Sergio Botero, 2020. "An Integrated Indicator to Analyze Sustainability in Specialized Dairy Farms in Antioquia—Colombia," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    3. Philip Leat & Cesar Revoredo-Giha & Chrysa Lamprinopoulou, 2011. "Scotland’s Food and Drink Policy Discussion: Sustainability Issues in the Food Supply Chain," Sustainability, MDPI, vol. 3(4), pages 1-27, March.
    4. van Calker, K.J. & Berentsen, P.B.M. & Giesen, G.W.J. & Huirne, R.B.M., 2008. "Maximising sustainability of Dutch dairy farming systems for different stakeholders: A modelling approach," Ecological Economics, Elsevier, vol. 65(2), pages 407-419, April.
    5. Dakpo, Hervé K & Jeanneaux, Philippe & Latruffe, Laure, 2014. "Inclusion of undesirable outputs in production technology modeling: The case of greenhouse gas emissions in French meat sheep farming," Working Papers 207806, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    6. Sydorovych, Olha & Wossink, Ada, 2007. "Assessing Sustainability of Agricultural Systems: Evidence from a Conjoint Choice Survey," 2007 Annual Meeting, February 4-7, 2007, Mobile, Alabama 34889, Southern Agricultural Economics Association.
    7. Vivek Arulnathan & Mohammad Davoud Heidari & Maurice Doyon & Eric P. H. Li & Nathan Pelletier, 2022. "Economic Indicators for Life Cycle Sustainability Assessment: Going beyond Life Cycle Costing," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    8. Gerdessen, Johanna C. & Pascucci, Stefano, 2013. "Data Envelopment Analysis of sustainability indicators of European agricultural systems at regional level," Agricultural Systems, Elsevier, vol. 118(C), pages 78-90.
    9. Lambotte, Mathieu & De Cara, Stéphane & Brocas, Catherine & Bellassen, Valentin, 2021. "Carbon footprint and economic performance of dairy farms: The case of protected designation of origin farms in France," Agricultural Systems, Elsevier, vol. 186(C).
    10. Reidsma, Pytrik & Janssen, Sander & Jansen, Jacques & van Ittersum, Martin K., 2018. "On the development and use of farm models for policy impact assessment in the European Union – A review," Agricultural Systems, Elsevier, vol. 159(C), pages 111-125.
    11. Lucio Cecchini & Biancamaria Torquati & Chiara Paffarini & Marco Barbanera & Daniele Foschini & Massimo Chiorri, 2016. "The Milk Supply Chain in Italy’s Umbria Region: Environmental and Economic Sustainability," Sustainability, MDPI, vol. 8(8), pages 1-15, July.
    12. Van Middelaar, C.E. & Berentsen, P.B.M. & Dijkstra, J. & De Boer, I.J.M., 2013. "Evaluation of a feeding strategy to reduce greenhouse gas emissions from dairy farming: The level of analysis matters," Agricultural Systems, Elsevier, vol. 121(C), pages 9-22.
    13. Bonnet, Céline & Bouamra-Mechemache, Zohra & Corre, Tifenn, 2018. "An Environmental Tax Towards More Sustainable Food: Empirical Evidence of the Consumption of Animal Products in France," Ecological Economics, Elsevier, vol. 147(C), pages 48-61.
    14. van Calker, K.J. & Berentsen, P.B.M. & Romero, C. & Giesen, G.W.J. & Huirne, R.B.M., 2006. "Development and application of a multi-attribute sustainability function for Dutch dairy farming systems," Ecological Economics, Elsevier, vol. 57(4), pages 640-658, June.
    15. Parra-López, Carlos & Groot, Jeroen C.J. & Carmona-Torres, Carmen & Rossing, Walter A.H., 2008. "Integrating public demands into model-based design for multifunctional agriculture: An application to intensive Dutch dairy landscapes," Ecological Economics, Elsevier, vol. 67(4), pages 538-551, November.
    16. Xabier Díaz de Otálora & Agustín del Prado & Federico Dragoni & Fernando Estellés & Barbara Amon, 2021. "Evaluating Three-Pillar Sustainability Modelling Approaches for Dairy Cattle Production Systems," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    17. Fankhauser, Samuel & Hepburn, Cameron, 2010. "Designing carbon markets. Part I: Carbon markets in time," Energy Policy, Elsevier, vol. 38(8), pages 4363-4370, August.
    18. Frans P. Vries & Nick Hanley, 2016. "Incentive-Based Policy Design for Pollution Control and Biodiversity Conservation: A Review," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(4), pages 687-702, April.
    19. Shingo Yoshida & Hironori Yagi, 2021. "Long-Term Development of Urban Agriculture: Resilience and Sustainability of Farmers Facing the Covid-19 Pandemic in Japan," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    20. Armin Schmutzler, 1996. "Pollution control with imperfectly observable emissions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 7(3), pages 251-262, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1615-:d:111596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.