IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i6p988-d101012.html
   My bibliography  Save this article

Sustainable Effects of Small Hydropower Substituting Firewood Program in Majiang County, Guizhou Province, China

Author

Listed:
  • Xiaoxia Zhang

    (Soil and Water Conservation of Beijing Engineering Research Center, College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Tonggang Zha

    (Soil and Water Conservation of Beijing Engineering Research Center, College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Yun Zhao

    (Engineering Design & Research Center, China Institute of Water Resources & Hydropower Research, Beijing 100048, China)

  • Jing Qin

    (Engineering Design & Research Center, China Institute of Water Resources & Hydropower Research, Beijing 100048, China)

  • Zhiyuan Lyv

    (College of Forestry, Beijing Forestry University, Beijing 100083, China)

  • Zhijie Ma

    (Engineering Design & Research Center, China Institute of Water Resources & Hydropower Research, Beijing 100048, China)

  • Haiyan Yu

    (College of Forestry, Beijing Forestry University, Beijing 100083, China)

  • Yushen Zhu

    (Soil and Water Conservation of Beijing Engineering Research Center, College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Gaomin Wang

    (College of Forestry, Beijing Forestry University, Beijing 100083, China)

  • Felix Tettenborn

    (Fraunhofer Institute for Systems and Innovation Research ISI, 76139 Karlsruhe, Germany)

  • Benedikt Freiherr von Lueninck

    (Fraunhofer Institute for Systems and Innovation Research ISI, 76139 Karlsruhe, Germany)

Abstract

Small hydropower substituting fuel (SHSF) is an ecological environment protection program to improve regional ecosystems and alleviate poverty. However, the sustainability of SHSF programs remains controversial due to lingering doubts about its potential for socioeconomic development and its environmental impacts. The sustainability of SHSF was examined based on field investigations and household questionnaire surveys. The results were as follows: (1) Biomass of SHSF protected masson pine ( Pinus massoniana ) and weeping cypress ( Platycladus orientalis ) plantations were 11.06 t·ha −1 and 7.15 t·ha −1 higher than unprotected plantations, respectively. Furthermore, the differences in ecosystem biomass were mainly derived from arbor biomass. While the energy conversion efficiency based on field investigations was merely 1.28 kg (kWh) −1 , which was only 64% of the empirical value and 54% of the guideline for accounting for the ecological benefit of small hydropower substituting fuel. (2) Households’ total income in SHSF villages was higher than in households with access to a hydropower plant but no substituting fuel or households with no hydropower plant. (3) Most of the households had a positive attitude towards SHSF because of its cheaper electricity and associated ecological environmental improvements. Overall, our results suggest optimistic and sustainable prospects for the SHSF program; however, continued education and policy communications are needed to sustain program success.

Suggested Citation

  • Xiaoxia Zhang & Tonggang Zha & Yun Zhao & Jing Qin & Zhiyuan Lyv & Zhijie Ma & Haiyan Yu & Yushen Zhu & Gaomin Wang & Felix Tettenborn & Benedikt Freiherr von Lueninck, 2017. "Sustainable Effects of Small Hydropower Substituting Firewood Program in Majiang County, Guizhou Province, China," Sustainability, MDPI, vol. 9(6), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:988-:d:101012
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/6/988/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/6/988/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pang, Mingyue & Zhang, Lixiao & Ulgiati, Sergio & Wang, Changbo, 2015. "Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant," Energy Policy, Elsevier, vol. 76(C), pages 112-122.
    2. Zheng, Xinye & Wei, Chu & Qin, Ping & Guo, Jin & Yu, Yihua & Song, Feng & Chen, Zhanming, 2014. "Characteristics of residential energy consumption in China: Findings from a household survey," Energy Policy, Elsevier, vol. 75(C), pages 126-135.
    3. Chen, G.Q. & Chen, B., 2007. "Resource analysis of the Chinese society 1980-2002 based on exergy--Part 1: Fossil fuels and energy minerals," Energy Policy, Elsevier, vol. 35(4), pages 2038-2050, April.
    4. Chen, G.Q. & Chen, B., 2007. "Resource analysis of the Chinese society 1980-2002 based on energy--Part 5: Resource structure and intensity," Energy Policy, Elsevier, vol. 35(4), pages 2087-2095, April.
    5. Song, Conghe & Zhang, Yulong & Mei, Ying & Liu, Hua & Zhang, Zhiqiang & Zhang, Quanfa & Zha, Tonggang & Zhang, Kerong & Huang, Chenglin & Xu, Xiaoniu & Jagger, Pamela & Chen, Xiaodong & Bilsborrow, Ri, 2014. "Sustainability of Forests Created by China's Sloping Land Conversion Program: A comparison among three sites in Anhui, Hubei and Shanxi," Forest Policy and Economics, Elsevier, vol. 38(C), pages 161-167.
    6. Darmawi, & Sipahutar, Riman & Bernas, Siti Masreah & Imanuddin, Momon Sodik, 2013. "Renewable energy and hydropower utilization tendency worldwide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 213-215.
    7. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    8. Shen, Yueqin & Liao, Xianchun & Yin, Runsheng, 2006. "Measuring the socioeconomic impacts of China's Natural Forest Protection Program," Environment and Development Economics, Cambridge University Press, vol. 11(6), pages 769-788, December.
    9. Zhang, Ming & Su, Bin, 2016. "Assessing China's rural household energy sustainable development using improved grouped principal component method," Energy, Elsevier, vol. 113(C), pages 509-514.
    10. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems," Sustainability, MDPI, vol. 8(6), pages 1-14, June.
    11. Emi Uchida & Jintao Xu & Scott Rozelle, 2005. "Grain for Green: Cost-Effectiveness and Sustainability of China’s Conservation Set-Aside Program," Land Economics, University of Wisconsin Press, vol. 81(2).
    12. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    13. Kong, Yigang & Wang, Jie & Kong, Zhigang & Song, Furong & Liu, Zhiqi & Wei, Congmei, 2015. "Small hydropower in China: The survey and sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 425-433.
    14. Kong, Yigang & Kong, Zhigang & Liu, Zhiqi & Wei, Congmei & An, Gaocheng, 2016. "Substituting small hydropower for fuel: The practice of China and the sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 978-991.
    15. Sharma, Naveen Kumar & Tiwari, Prashant Kumar & Sood, Yog Raj, 2013. "A comprehensive analysis of strategies, policies and development of hydropower in India: Special emphasis on small hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 460-470.
    16. Chen, B. & Chen, G.Q., 2007. "Resource analysis of the Chinese society 1980-2002 based on exergy--Part 2: Renewable energy sources and forest," Energy Policy, Elsevier, vol. 35(4), pages 2051-2064, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Chen & Gaohui Li & Delou Wang & Xingtao Wang & Jian Zhang & Xiaodong Yu, 2019. "Impact of Tail Water Fluctuation on Turbine Start-Up and Optimized Regulation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    2. Seungkook Roh & Jin Won Lee & Qingchang Li, 2019. "Effects of Rank-Ordered Feature Perceptions of Energy Sources on the Choice of the Most Acceptable Power Plant for a Neighborhood: An Investigation Using a South Korean Nationwide Sample," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    3. Xiaona Guo & Ruishan Chen & Michael E. Meadows & Qiang Li & Zilong Xia & Zhenzhen Pan, 2023. "Factors Influencing Four Decades of Forest Change in Guizhou Province, China," Land, MDPI, vol. 12(5), pages 1-20, May.
    4. Pécastaing, Nicolas & Dávalos, Jorge & Inga, Andy, 2018. "The effect of Peru's CDM investments on households’ welfare: An econometric approach," Energy Policy, Elsevier, vol. 123(C), pages 198-207.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lixiao & Pang, Mingyue & Bahaj, AbuBakr S. & Yang, Yongchuan & Wang, Changbo, 2021. "Small hydropower development in China: Growing challenges and transition strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Pang, Mingyue & Zhang, Lixiao & Bahaj, AbuBakr S. & Xu, Kaipeng & Hao, Yan & Wang, Changbo, 2018. "Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3032-3040.
    3. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    4. Chen, G.Q. & Jiang, M.M. & Yang, Z.F. & Chen, B. & Ji, Xi & Zhou, J.B., 2009. "Exergetic assessment for ecological economic system: Chinese agriculture," Ecological Modelling, Elsevier, vol. 220(3), pages 397-410.
    5. Zhang, Xiaohong & Wu, Liqian & Zhang, Rong & Deng, Shihuai & Zhang, Yanzong & Wu, Jun & Li, Yuanwei & Lin, Lili & Li, Li & Wang, Yinjun & Wang, Lilin, 2013. "Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 259-270.
    6. Huang, Xiaoxun & Hayashi, Kiichiro & Fujii, Minoru & Villa, Ferdinando & Yamazaki, Yuri & Okazawa, Hiromu, 2023. "Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China," Renewable Energy, Elsevier, vol. 205(C), pages 293-304.
    7. Niu, Shuwen & Li, Zhen & Qiu, Xin & Dai, Runqi & Wang, Xiang & Qiang, Wenli & Hong, Zhenguo, 2019. "Measurement of effective energy consumption in China's rural household sector and policy implication," Energy Policy, Elsevier, vol. 128(C), pages 553-564.
    8. An, Qier & An, Haizhong & Wang, Lang & Huang, Xuan, 2014. "Structural and regional variations of natural resource production in China based on exergy," Energy, Elsevier, vol. 74(C), pages 67-77.
    9. Chen, G.Q. & Yang, Q. & Zhao, Y.H., 2011. "Renewability of wind power in China: A case study of nonrenewable energy cost and greenhouse gas emission by a plant in Guangxi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2322-2329, June.
    10. Li, Jianglong & Chen, Chang & Liu, Hongxun, 2019. "Transition from non-commercial to commercial energy in rural China: Insights from the accessibility and affordability," Energy Policy, Elsevier, vol. 127(C), pages 392-403.
    11. Jiang, M.M. & Chen, B. & Zhou, J.B. & Tao, F.R. & Li, Z. & Yang, Z.F. & Chen, G.Q., 2007. "Emergy account for biomass resource exploitation by agriculture in China," Energy Policy, Elsevier, vol. 35(9), pages 4704-4719, September.
    12. Amiri, Zahra & Asgharipour, Mohammad Reza & Campbell, Daniel E. & Armin, Mohammad, 2020. "Extended exergy analysis (EAA) of two canola farming systems in Khorramabad, Iran," Agricultural Systems, Elsevier, vol. 180(C).
    13. Tian, Xu & Chen, Bin & Geng, Yong & Zhong, Shaozhuo & Gao, Cuixia & Wilson, Jeffrey & Cui, Xiaowei & Dou, Yi, 2019. "Energy footprint pathways of China," Energy, Elsevier, vol. 180(C), pages 330-340.
    14. Warr, Benjamin & Ayres, Robert & Eisenmenger, Nina & Krausmann, Fridolin & Schandl, Heinz, 2010. "Energy use and economic development: A comparative analysis of useful work supply in Austria, Japan, the United Kingdom and the US during 100Â years of economic growth," Ecological Economics, Elsevier, vol. 69(10), pages 1904-1917, August.
    15. Wu, Shu, 2020. "The evolution of rural energy policies in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    17. An, Qier & An, Haizhong & Wang, Lang & Gao, Xiangyun & Lv, Na, 2015. "Analysis of embodied exergy flow between Chinese industries based on network theory," Ecological Modelling, Elsevier, vol. 318(C), pages 26-35.
    18. Zhang, Lixiao & Yang, Zhifeng & Chen, Bin & Chen, Guoqian, 2009. "Rural energy in China: Pattern and policy," Renewable Energy, Elsevier, vol. 34(12), pages 2813-2823.
    19. Wang, Yongpei & Yan, Weilong & Zhuang, Shangwen & Zhang, Qian, 2019. "Competition or complementarity ? The hydropower and thermal power nexus in China," Renewable Energy, Elsevier, vol. 138(C), pages 531-541.
    20. Chen, G.Q. & Yang, Q. & Zhao, Y.H. & Wang, Z.F., 2011. "Nonrenewable energy cost and greenhouse gas emissions of a 1.5Â MW solar power tower plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1961-1967, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:988-:d:101012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.