IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i5p714-d97159.html
   My bibliography  Save this article

Minimum Quantity Lubrication and Carbon Footprint: A Step towards Sustainability

Author

Listed:
  • Muhammad Omair

    (Department of Industrial & Management Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Korea)

  • Biswajit Sarkar

    (Department of Industrial & Management Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Korea)

  • Leopoldo Eduardo Cárdenas-Barrón

    (Department of Industrial and Systems Engineering, School of Engineering, Tecnológico de Monterrey, E. Garza Sada 2501 Sur, Monterrey C.P. 64849, Nuevo León, Mexico)

Abstract

In today’s world, there is an increasing awareness among consumers for demanding sustainable products. Several countries have already started working to create strategies for implementing sustainable manufacturing. Other countries are making efforts to access international markets and face intense market competitions in terms of sustainable status of products, which build a huge pressure on manufacturers to avail the concept of sustainable manufacturing. This paper proposes a manufacturing model to minimize total cost of manufacturing and carbon emissions with the effect of variable production quantity to provide sustainable manufacturing. Total cost of manufacturing includes fixed costs and variable costs with the addition of cost of minimum quantity lubrication and imperfect quality items. Minimum quantity lubrication system is an eco-friendly and sustainable, which reduces negative impact on environment and improves workers' safety. This study considers the real situation of imperfect products and proportion of it can be reworked at certain known rate. Numerical example and sensitivity analysis are given by using multiobjective genetic algorithm and goal attainment techniques to illustrate the practical applications of the proposed model.

Suggested Citation

  • Muhammad Omair & Biswajit Sarkar & Leopoldo Eduardo Cárdenas-Barrón, 2017. "Minimum Quantity Lubrication and Carbon Footprint: A Step towards Sustainability," Sustainability, MDPI, vol. 9(5), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:714-:d:97159
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/5/714/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/5/714/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Forza, Cipriano & Filippini, Roberto, 1998. "TQM impact on quality conformance and customer satisfaction: A causal model," International Journal of Production Economics, Elsevier, vol. 55(1), pages 1-20, June.
    2. Busch, Timo & Hoffmann, Volker H., 2007. "Emerging carbon constraints for corporate risk management," Ecological Economics, Elsevier, vol. 62(3-4), pages 518-528, May.
    3. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    4. Sarkar, Biswajit & Moon, Ilkyeong, 2014. "Improved quality, setup cost reduction, and variable backorder costs in an imperfect production process," International Journal of Production Economics, Elsevier, vol. 155(C), pages 204-213.
    5. Marc A. Rosen & Hossam A. Kishawy, 2012. "Sustainable Manufacturing and Design: Concepts, Practices and Needs," Sustainability, MDPI, vol. 4(2), pages 1-21, January.
    6. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    7. Shaheen Sardar & Young Hae Lee & Muhammad Saad Memon, 2016. "A Sustainable Outsourcing Strategy Regarding Cost, Capacity Flexibility, and Risk in a Textile Supply Chain," Sustainability, MDPI, vol. 8(3), pages 1-19, March.
    8. Wang, Yong & Li, Lin, 2013. "Time-of-use based electricity demand response for sustainable manufacturing systems," Energy, Elsevier, vol. 63(C), pages 233-244.
    9. Kuhtz, Silvana & Zhou, Chaoying & Albino, Vito & Yazan, Devrim M., 2010. "Energy use in two Italian and Chinese tile manufacturers: A comparison using an enterprise input–output model," Energy, Elsevier, vol. 35(1), pages 364-374.
    10. Thomas Dyllick & Kai Hockerts, 2002. "Beyond the business case for corporate sustainability," Business Strategy and the Environment, Wiley Blackwell, vol. 11(2), pages 130-141, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang Wook Kang & Muhammad Imran & Muhammad Omair & Waqas Ahmed & Misbah Ullah & Biswajit Sarkar, 2019. "Stochastic-Petri Net Modeling and Optimization for Outdoor Patients in Building Sustainable Healthcare System Considering Staff Absenteeism," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
    2. Mitali Sarkar & Sungjun Kim & Jihed Jemai & Baishakhi Ganguly & Biswajit Sarkar, 2019. "An Application of Time-Dependent Holding Costs and System Reliability in a Multi-Item Sustainable Economic Energy Efficient Reliable Manufacturing System," Energies, MDPI, vol. 12(15), pages 1-19, July.
    3. Bimal Kumar Sett & Bikash Koli Dey & Biswajit Sarkar, 2020. "The Effect of O2O Retail Service Quality in Supply Chain Management," Mathematics, MDPI, vol. 8(10), pages 1-36, October.
    4. Chang Wook Kang & Misbah Ullah & Mitali Sarkar & Muhammad Omair & Biswajit Sarkar, 2019. "A Single-Stage Manufacturing Model with Imperfect Items, Inspections, Rework, and Planned Backorders," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    5. Mohammed Alkahtani & Qazi Salman Khalid & Muhammad Jalees & Muhammad Omair & Ghulam Hussain & Catalin Iulian Pruncu, 2021. "E-Agricultural Supply Chain Management Coupled with Blockchain Effect and Cooperative Strategies," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
    6. Yuhe Shi & Zhenggang He, 2018. "Decision Analysis of Disturbance Management in the Process of Medical Supplies Transportation after Natural Disasters," IJERPH, MDPI, vol. 15(8), pages 1-18, August.
    7. Min Shang & Ji Luo, 2021. "The Tapio Decoupling Principle and Key Strategies for Changing Factors of Chinese Urban Carbon Footprint Based on Cloud Computing," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
    8. Muhammad Omair & Mohammed Alkahtani & Kashif Ayaz & Ghulam Hussain & Johannes Buhl, 2022. "Supply Chain Modelling of the Automobile Multi-Stage Production Considering Circular Economy by Waste Management Using Recycling and Reworking Operations," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    9. Waqas Ahmed & Muhammad Jalees & Muhammad Omair & Zainab Mukhtar & Muhammad Imran, 2022. "An inventory management for global supply chain through reworking of defective items having positive inventory level under multi-trade-credit-period," Annals of Operations Research, Springer, vol. 315(1), pages 1-28, August.
    10. Mitali Sarkar & Biswajit Sarkar, 2019. "Optimization of Safety Stock under Controllable Production Rate and Energy Consumption in an Automated Smart Production Management," Energies, MDPI, vol. 12(11), pages 1-16, May.
    11. Xia, Jing & Niu, Wenju, 2021. "Carbon-reducing contract design for a supply chain with environmental responsibility under asymmetric information," Omega, Elsevier, vol. 102(C).
    12. Muhammad Omair & Misbah Ullah & Baishakhi Ganguly & Sahar Noor & Shahid Maqsood & Biswajit Sarkar, 2019. "The Quantitative Analysis of Workers’ Stress Due to Working Environment in the Production System of the Automobile Part Manufacturing Industry," Mathematics, MDPI, vol. 7(7), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tze San Ong & Boon Heng Teh & Ah Suat Lee, 2019. "Contingent Factors and Sustainable Performance Measurement (SPM) Practices of Malaysian Electronics and Electrical Companies," Sustainability, MDPI, vol. 11(4), pages 1-33, February.
    2. Ajay Kumar & Jyotirani Gupta & Niladri Das, 2022. "Revisiting the influence of corporate sustainability practices on corporate financial performance: An evidence from the global energy sector," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3231-3253, November.
    3. Sullivan, Rory & Gouldson, Andy, 2013. "Ten years of corporate action on climate change: What do we have to show for it?," Energy Policy, Elsevier, vol. 60(C), pages 733-740.
    4. Bilgen, Selçuk & Sarıkaya, İkbal, 2015. "Exergy for environment, ecology and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1115-1131.
    5. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    6. Ioana Gutu & Daniela Tatiana Agheorghiesei & Alexandru Tugui, 2023. "Assessment of a Workforce Sustainability Tool through Leadership and Digitalization," IJERPH, MDPI, vol. 20(2), pages 1-30, January.
    7. Jung Eon Kwon & Hyung Rok Woo, 2017. "The Impact of Flipped Learning on Cooperative and Competitive Mindsets," Sustainability, MDPI, vol. 10(1), pages 1-15, December.
    8. Rambaud, Alexandre & Richard, Jacques, 2015. "The “Triple Depreciation Line” instead of the “Triple Bottom Line”: Towards a genuine integrated reporting," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 33(C), pages 92-116.
    9. Maria Björklund & Helena Forslund, 2019. "Challenges Addressed by Swedish Third-Party Logistics Providers Conducting Sustainable Logistics Business Cases," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    10. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    11. Mohammed A. Al-Ghamdi & Khalid S. Al-Gahtani, 2022. "Integrated Value Engineering and Life Cycle Cost Modeling for HVAC System Selection," Sustainability, MDPI, vol. 14(4), pages 1-30, February.
    12. Weifan Zhong & Lijing Du, 2023. "Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    13. Merriam Haffar & Cory Searcy, 2018. "Target‐setting for ecological resilience: Are companies setting environmental sustainability targets in line with planetary thresholds?," Business Strategy and the Environment, Wiley Blackwell, vol. 27(7), pages 1079-1092, November.
    14. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    15. Abbate, Stefano & Centobelli, Piera & Cerchione, Roberto, 2023. "From Fast to Slow: An Exploratory Analysis of Circular Business Models in the Italian Apparel Industry," International Journal of Production Economics, Elsevier, vol. 260(C).
    16. Zhang, XiaoLi & Liu, ChenGuang & Li, WenJuan & Evans, Steve & Yin, Yong, 2017. "Effects of key enabling technologies for seru production on sustainable performance," Omega, Elsevier, vol. 66(PB), pages 290-307.
    17. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2014. "Experimental Analysis of Natural Gravel Covering as Cool Roofing and Cool Pavement," Sustainability, MDPI, vol. 6(8), pages 1-17, July.
    18. Mara Del Baldo & Maria-Gabriella Baldarelli, 2017. "Renewing and improving the business model toward sustainability in theory and practice," International Journal of Corporate Social Responsibility, Springer, vol. 2(1), pages 1-13, December.
    19. Jeonghwa Cha & Kyungbo Park & Hangook Kim & Jongyi Hong, 2023. "Crisis Index Prediction Based on Momentum Theory and Earnings Downside Risk Theory: Focusing on South Korea’s Energy Industry," Energies, MDPI, vol. 16(5), pages 1-20, February.
    20. Tang, Rui & Li, Hangxin & Wang, Shengwei, 2019. "A game theory-based decentralized control strategy for power demand management of building cluster using thermal mass and energy storage," Applied Energy, Elsevier, vol. 242(C), pages 809-820.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:714-:d:97159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.