IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i1p144-d88247.html
   My bibliography  Save this article

A New Resilience Measure for Supply Chain Networks

Author

Listed:
  • Ruiying Li

    (School of Reliability and Systems Engineering, Beihang University, No. 37, Xue Yuan Road, Beijing 100191, China
    Science and Technology on Reliability and Environmental Engineering Laboratory, No. 37, Xue Yuan Road, Beijing 100191, China)

  • Qiang Dong

    (School of Reliability and Systems Engineering, Beihang University, No. 37, Xue Yuan Road, Beijing 100191, China)

  • Chong Jin

    (School of Reliability and Systems Engineering, Beihang University, No. 37, Xue Yuan Road, Beijing 100191, China)

  • Rui Kang

    (School of Reliability and Systems Engineering, Beihang University, No. 37, Xue Yuan Road, Beijing 100191, China
    Science and Technology on Reliability and Environmental Engineering Laboratory, No. 37, Xue Yuan Road, Beijing 100191, China)

Abstract

Currently, supply chain networks can span the whole world, and any disruption of these networks may cause economic losses, decreases in sales and unsustainable supplies. Resilience, the ability of the system to withstand disruption and return to a normal state quickly, has become a new challenge during the supply chain network design. This paper defines a new resilience measure as the ratio of the integral of the normalized system performance within its maximum allowable recovery time after the disruption to the integral of the performance in the normal state. Using the maximum allowable recovery time of the system as the time interval under consideration, this measure allows the resilience of different systems to be compared on the same relative scale, and be used under both scenarios that the system can or cannot restore in the given time. Two specific resilience measures, the resilience based on the amount of product delivered and the resilience based on the average delivery distance, are provided for supply chain networks. To estimate the resilience of a given supply chain network, a resilience simulation method is proposed based on the Monte Carlo method. A four-layered hierarchial mobile phone supply chain network is used to illustrate the resilience quantification process and show how network structure affects the resilience of supply chain networks.

Suggested Citation

  • Ruiying Li & Qiang Dong & Chong Jin & Rui Kang, 2017. "A New Resilience Measure for Supply Chain Networks," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:144-:d:88247
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/1/144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/1/144/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sonia Irshad Mari & Young Hae Lee & Muhammad Saad Memon, 2014. "Sustainable and Resilient Supply Chain Network Design under Disruption Risks," Sustainability, MDPI, vol. 6(10), pages 1-21, September.
    2. Brian Tomlin, 2006. "On the Value of Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks," Management Science, INFORMS, vol. 52(5), pages 639-657, May.
    3. Mari, Sonia Irshad & Lee, Young Hae & Memon, Muhammad Saad & Cho, Su Yeon, 2014. "A Three-level Sustainable and Resilient Supply Chain Network Design under Disruption," MPRA Paper 58228, University Library of Munich, Germany.
    4. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    5. Weiss, Howard J. & Rosenthal, Edward C., 1992. "Optimal ordering policies when anticipating a disruption in supply or demand," European Journal of Operational Research, Elsevier, vol. 59(3), pages 370-382, June.
    6. Klibi, Walid & Martel, Alain, 2012. "Scenario-based Supply Chain Network risk modeling," European Journal of Operational Research, Elsevier, vol. 223(3), pages 644-658.
    7. Lin, Yi-Kuei, 2010. "System reliability of a stochastic-flow network through two minimal paths under time threshold," International Journal of Production Economics, Elsevier, vol. 124(2), pages 382-387, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo Bruno Prataviera & Alessandro Creazza & Marco Melacini & Fabrizio Dallari, 2022. "Heading for Tomorrow: Resilience Strategies for Post-COVID-19 Grocery Supply Chains," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    2. Ruiying Li & Xiaoyu Tian & Li Yu & Rui Kang, 2019. "A Systematic Disturbance Analysis Method for Resilience Evaluation: A Case Study in Material Handling Systems," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    3. Khairy Sayed & Ahmed G. Abo-Khalil & Ali S. Alghamdi, 2019. "Optimum Resilient Operation and Control DC Microgrid Based Electric Vehicles Charging Station Powered by Renewable Energy Sources," Energies, MDPI, vol. 12(22), pages 1-23, November.
    4. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    6. Ahmadian, Navid & Lim, Gino J. & Cho, Jaeyoung & Bora, Selim, 2020. "A quantitative approach for assessment and improvement of network resilience," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    7. Ding, Yueting & Zhang, Ming & Chen, Sai & Nie, Rui, 2020. "Assessing the resilience of China’s natural gas importation under network disruptions," Energy, Elsevier, vol. 211(C).
    8. Kulkarni, Onkar & Dahan, Mathieu & Montreuil, Benoit, 2022. "Resilient Hyperconnected Parcel Delivery Network Design Under Disruption Risks," International Journal of Production Economics, Elsevier, vol. 251(C).
    9. Gao, Shengling & Li, Daqing & Zheng, Nan & Hu, Ruiqi & She, Zhikun, 2022. "Resilient perimeter control for hyper-congested two-region networks with MFD dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 50-75.
    10. Elena Candelo & Cecilia Casalegno & Chiara Civera & Fabrizio Mosca, 2018. "Turning Farmers into Business Partners through Value Co-Creation Projects. Insights from the Coffee Supply Chain," Sustainability, MDPI, vol. 10(4), pages 1-21, March.
    11. Cornelis, Erwin, 2019. "History and prospect of voluntary agreements on industrial energy efficiency in Europe," Energy Policy, Elsevier, vol. 132(C), pages 567-582.
    12. Zeplin Jiwa Husada Tarigan & Hotlan Siagian & Ferry Jie, 2021. "Impact of Internal Integration, Supply Chain Partnership, Supply Chain Agility, and Supply Chain Resilience on Sustainable Advantage," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    13. Pawlicka Kinga & Bal Monika, 2022. "Sustainable Supply Chain Finances implementation model and Artificial Intelligence for innovative omnichannel logistics," Management, Sciendo, vol. 26(1), pages 19-35, January.
    14. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    15. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    16. Jialu Shi & Xuan Wang & Chengxin Wang & Haimeng Liu & Yi Miao & Fuyi Ci, 2022. "Evaluation and Influencing Factors of Network Resilience in Guangdong-Hong Kong-Macao Greater Bay Area: A Structural Perspective," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    17. Jiguang Wang & Yucai Wu, 2018. "An Improved Voronoi-Diagram-Based Algorithm for Continuous Facility Location Problem under Disruptions," Sustainability, MDPI, vol. 10(9), pages 1-13, August.
    18. Ruiying Li & Qiang Dong & Wenting Ma & Rui Kang, 2023. "A test-based methodology for the probabilistic assessment of system resilience under random disturbances," Journal of Risk and Reliability, , vol. 237(4), pages 671-685, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kanokporn Kungwalsong & Abraham Mendoza & Vasanth Kamath & Subramanian Pazhani & Jose Antonio Marmolejo-Saucedo, 2022. "An application of interactive fuzzy optimization model for redesigning supply chain for resilience," Annals of Operations Research, Springer, vol. 315(2), pages 1803-1839, August.
    2. Shashi & Piera Centobelli & Roberto Cerchione & Myriam Ertz, 2020. "Managing supply chain resilience to pursue business and environmental strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 1215-1246, March.
    3. João Pires Ribeiro & Ana Paula F. D. Barbosa-Póvoa, 2023. "A responsiveness metric for the design and planning of resilient supply chains," Annals of Operations Research, Springer, vol. 324(1), pages 1129-1181, May.
    4. Ahmadian, Navid & Lim, Gino J. & Cho, Jaeyoung & Bora, Selim, 2020. "A quantitative approach for assessment and improvement of network resilience," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    5. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    6. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    7. Fu Jia & Yan Jiang, 2018. "Sustainable Global Sourcing: A Systematic Literature Review and Bibliometric Analysis," Sustainability, MDPI, vol. 10(3), pages 1-26, February.
    8. Zobel, Christopher W. & Baghersad, Milad, 2020. "Analytically comparing disaster resilience across multiple dimensions," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    9. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    10. Maria Ghufran & Khurram Iqbal Ahmad Khan & Fahim Ullah & Wesam Salah Alaloul & Muhammad Ali Musarat, 2022. "Key Enablers of Resilient and Sustainable Construction Supply Chains: A Systems Thinking Approach," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    11. Elifcan Göçmen & Rızvan Erol, 2018. "The Problem of Sustainable Intermodal Transportation: A Case Study of an International Logistics Company, Turkey," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    12. Luis Francisco López-Castro & Elyn L. Solano-Charris, 2021. "Integrating Resilience and Sustainability Criteria in the Supply Chain Network Design. A Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    13. Xin Zhang & Gang Zhao & Yingxiu Qi & Botang Li, 2019. "A Robust Fuzzy Optimization Model for Closed-Loop Supply Chain Networks Considering Sustainability," Sustainability, MDPI, vol. 11(20), pages 1-24, October.
    14. El-Awady Attia & Ali Alarjani & Md. Sharif Uddin & Ahmed Farouk Kineber, 2023. "Determining the Stationary Enablers of Resilient and Sustainable Supply Chains," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    15. Hishamuddin, Hawa & Sarker, Ruhul A. & Essam, Daryl, 2014. "A recovery mechanism for a two echelon supply chain system under supply disruption," Economic Modelling, Elsevier, vol. 38(C), pages 555-563.
    16. Hao Yu & Wei Deng Solvang, 2016. "A Stochastic Programming Approach with Improved Multi-Criteria Scenario-Based Solution Method for Sustainable Reverse Logistics Design of Waste Electrical and Electronic Equipment (WEEE)," Sustainability, MDPI, vol. 8(12), pages 1-28, December.
    17. Yanyan Yang & Shenle Pan & Eric Ballot, 2016. "Performance evaluation of interconnected logistics networks confronted to hub disruptions," Post-Print hal-01320641, HAL.
    18. Jung Seung Lee & Soo Kyung Kim & Su-Yol Lee, 2016. "Sustainable Supply Chain Capabilities: Accumulation, Strategic Types and Performance," Sustainability, MDPI, vol. 8(6), pages 1-16, May.
    19. Yanyan Yang & Shenle Pan & Eric Ballot, 2017. "Mitigating supply chain disruptions through interconnected logistics services in the Physical Internet," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 3970-3983, July.
    20. Dries Couckuyt & Amy Van Looy, 2019. "Green BPM as a Business-Oriented Discipline: A Systematic Mapping Study and Research Agenda," Sustainability, MDPI, vol. 11(15), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:144-:d:88247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.