IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i9p12190-12208d55209.html
   My bibliography  Save this article

The Water Footprint of the Wine Industry: Implementation of an Assessment Methodology and Application to a Case Study

Author

Listed:
  • Emanuele Bonamente

    (CIRIAF—Centro Interuniversitario di Ricerca sull'Inquinamento e sull'Ambiente "M. Felli", Università degli Studi di Perugia, Via G. Duranti 67, 06125 Perugia, Italy)

  • Flavio Scrucca

    (CIRIAF—Centro Interuniversitario di Ricerca sull'Inquinamento e sull'Ambiente "M. Felli", Università degli Studi di Perugia, Via G. Duranti 67, 06125 Perugia, Italy)

  • Francesco Asdrubali

    (CIRIAF—Centro Interuniversitario di Ricerca sull'Inquinamento e sull'Ambiente "M. Felli", Università degli Studi di Perugia, Via G. Duranti 67, 06125 Perugia, Italy)

  • Franco Cotana

    (CIRIAF—Centro Interuniversitario di Ricerca sull'Inquinamento e sull'Ambiente "M. Felli", Università degli Studi di Perugia, Via G. Duranti 67, 06125 Perugia, Italy)

  • Andrea Presciutti

    (CIRIAF—Centro Interuniversitario di Ricerca sull'Inquinamento e sull'Ambiente "M. Felli", Università degli Studi di Perugia, Via G. Duranti 67, 06125 Perugia, Italy)

Abstract

An original methodology for the Water Footprint Assessment (WFA) of a Product for the wine-making industry sector is presented, with a particular focus on the evaluation procedure of the grey water. Results obtained with the proposed methodology are also presented for an Italian case study. The product was analyzed using a life-cycle approach, with the aim of studying the water volumes of each phase according to the newly-released ISO 14046 international standard. The functional unit chosen in this study is the common 0.75 liter wine bottle. An in-house software ( V.I.V.A. ) was implemented with the goal of accounting for all the contributions in a cradle-to-grave approach. At this stage, however, minor water volumes associated with some foreground and background processes are not assessed. The evaluation procedure was applied to a case study and green , blue , and grey water volumes were computed. Primary data were collected for a red wine produced by an Umbrian wine-making company. Results are in accordance with global average water footprint values from literature, showing a total WF of 632.2 L/bottle, with the major contribution (98.3%) given by green water, and minor contributions (1.2% and 0.5%) given by grey and blue water, respectively. A particular effort was dedicated to the definition of an improved methodology for the assessment of the virtual water volume required to dilute the load of pollutants on the environment below some reference level (Grey WF). The improved methodology was elaborated to assure the completeness of the water footprint assessment and to overcome some limitations of the reference approach. As a result, the overall WF can increase up to 3% in the most conservative hypotheses.

Suggested Citation

  • Emanuele Bonamente & Flavio Scrucca & Francesco Asdrubali & Franco Cotana & Andrea Presciutti, 2015. "The Water Footprint of the Wine Industry: Implementation of an Assessment Methodology and Application to a Case Study," Sustainability, MDPI, vol. 7(9), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:9:p:12190-12208:d:55209
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/9/12190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/9/12190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angelamaria Massimo & Marco Dell'Isola & Andrea Frattolillo & Giorgio Ficco, 2014. "Development of a Geographical Information System (GIS) for the Integration of Solar Energy in the Energy Planning of a Wide Area," Sustainability, MDPI, vol. 6(9), pages 1-15, August.
    2. Asdrubali, F. & Presciutti, A. & Scrucca, F., 2013. "Development of a greenhouse gas accounting GIS-based tool to support local policy making—application to an Italian municipality," Energy Policy, Elsevier, vol. 61(C), pages 587-594.
    3. Francesco Asdrubali & Franco Cotana & Federico Rossi & Andrea Presciutti & Antonella Rotili & Claudia Guattari, 2015. "Life Cycle Assessment of New Oxy-Fuels from Biodiesel-Derived Glycerol," Energies, MDPI, vol. 8(3), pages 1-16, February.
    4. Bradley G. Ridoutt & Peerasak Sanguansri & Gregory S. Harper, 2011. "Comparing Carbon and Water Footprints for Beef Cattle Production in Southern Australia," Sustainability, MDPI, vol. 3(12), pages 1-13, December.
    5. Ignacio Cazcarro & Rosa Duarte & Miguel Martín-Retortillo & Vicente Pinilla & Ana Serrano, 2015. "How Sustainable is the Increase in the Water Footprint of the Spanish Agricultural Sector? A Provincial Analysis between 1955 and 2005–2010," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    6. Lucia Irene Flores Lopez & Carlos Bautista-Capetillo, 2015. "Green and Blue Water Footprint Accounting for Dry Beans ( Phaseolus vulgaris ) in Primary Region of Mexico," Sustainability, MDPI, vol. 7(3), pages 1-16, March.
    7. Salata, F. & Coppi, M., 2014. "A first approach study on the desalination of sea water using heat transformers powered by solar ponds," Applied Energy, Elsevier, vol. 136(C), pages 611-618.
    8. Markus Berger & Matthias Finkbeiner, 2010. "Water Footprinting: How to Address Water Use in Life Cycle Assessment?," Sustainability, MDPI, vol. 2(4), pages 1-26, April.
    9. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina Matos & António Pirra, 2022. "Energy Consumption and CO 2 Emissions Related to Wine Production: The Case Study of a Winery in Douro Wine Region-Portugal," Sustainability, MDPI, vol. 14(7), pages 1-11, April.
    2. Emanuele Bonamente & Franco Cotana, 2015. "Carbon and Energy Footprints of Prefabricated Industrial Buildings: A Systematic Life Cycle Assessment Analysis," Energies, MDPI, vol. 8(11), pages 1-17, November.
    3. Eirini Aivazidou & Dimitrios Aidonis & Naoum Tsolakis & Charisios Achillas & Dimitrios Vlachos, 2022. "Wine Supply Chain Network Configuration under a Water Footprint Cap," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
    4. Gloria Luzzani & Erica Grandis & Marco Frey & Ettore Capri, 2021. "Blockchain Technology in Wine Chain for Collecting and Addressing Sustainable Performance: An Exploratory Study," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    5. Carmen Ferrara & Giovanni De Feo, 2018. "Life Cycle Assessment Application to the Wine Sector: A Critical Review," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
    6. Doszhan Baibokonov & Yongzhong Yang & Yunyan Tang & Md Sajjad Hosain, 2021. "Understanding the traditional mares’ milk industry’s transformation into a creative industry: Empirical evidence from Kazakhstan," Growth and Change, Wiley Blackwell, vol. 52(2), pages 1172-1196, June.
    7. Lisa Pizzol & Gloria Luzzani & Paolo Criscione & Luca Barro & Carlo Bagnoli & Ettore Capri, 2021. "The Role of Corporate Social Responsibility in the Wine Industry: The Case Study of Veneto and Friuli Venezia Giulia," Sustainability, MDPI, vol. 13(23), pages 1-15, November.
    8. Giovanni Sogari & Tommaso Pucci & Barbara Aquilani & Lorenzo Zanni, 2017. "Millennial Generation and Environmental Sustainability: The Role of Social Media in the Consumer Purchasing Behavior for Wine," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    9. Despoina Dede & Eleni Didaskalou & Sotirios Bersimis & Dimitrios Georgakellos, 2020. "A Statistical Framework for Assessing Environmental Performance of Quality Wine Production," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    10. Sara Rinaldi & Emanuele Bonamente & Flavio Scrucca & Maria Cleofe Merico & Francesco Asdrubali & Franco Cotana, 2016. "Water and Carbon Footprint of Wine: Methodology Review and Application to a Case Study," Sustainability, MDPI, vol. 8(7), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arjen Y. Hoekstra & Ashok K. Chapagain & Guoping Zhang, 2015. "Water Footprints and Sustainable Water Allocation," Sustainability, MDPI, vol. 8(1), pages 1-6, December.
    2. Sara Rinaldi & Emanuele Bonamente & Flavio Scrucca & Maria Cleofe Merico & Francesco Asdrubali & Franco Cotana, 2016. "Water and Carbon Footprint of Wine: Methodology Review and Application to a Case Study," Sustainability, MDPI, vol. 8(7), pages 1-17, July.
    3. White, Robin R. & Brady, Michael & Capper, Judith L. & Johnson, Kristen A., 2014. "Optimizing diet and pasture management to improve sustainability of U.S. beef production," Agricultural Systems, Elsevier, vol. 130(C), pages 1-12.
    4. Markus Berger & Jazmin Campos & Mauro Carolli & Ianna Dantas & Silvia Forin & Ervin Kosatica & Annika Kramer & Natalia Mikosch & Hamideh Nouri & Anna Schlattmann & Falk Schmidt & Anna Schomberg & Elsa, 2021. "Advancing the Water Footprint into an Instrument to Support Achieving the SDGs – Recommendations from the “Water as a Global Resources” Research Initiative (GRoW)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1291-1298, March.
    5. Willa Paterson & Richard Rushforth & Benjamin L. Ruddell & Megan Konar & Ikechukwu C. Ahams & Jorge Gironás & Ana Mijic & Alfonso Mejia, 2015. "Water Footprint of Cities: A Review and Suggestions for Future Research," Sustainability, MDPI, vol. 7(7), pages 1-30, June.
    6. Wang, Saige & Cao, Tao & Chen, Bin, 2021. "Identifying critical sectors and supply chain paths for virtual water and energy-related water trade in China," Applied Energy, Elsevier, vol. 299(C).
    7. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    8. Lucia Mancini, 2013. "Conventional, Organic and Polycultural Farming Practices: Material Intensity of Italian Crops and Foodstuffs," Resources, MDPI, vol. 2(4), pages 1-23, December.
    9. Tsoutsos, Theocharis & Chatzakis, Michael & Sarantopoulos, Ioannis & Nikologiannis, Athanasios & Pasadakis, Nikos, 2013. "Effect of wastewater irrigation on biodiesel quality and productivity from castor and sunflower oil seeds," Renewable Energy, Elsevier, vol. 57(C), pages 211-215.
    10. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    11. Elzbieta Rynska & Joanna Klimowicz & Slawomir Kowal & Krzysztof Lyzwa & Michal Pierzchalski & Wojciech Rekosz, 2020. "Smart Energy Solutions as an Indispensable Multi-Criteria Input for a Coherent Urban Planning and Building Design Process—Two Case Studies for Smart Office Buildings in Warsaw Downtown Area," Energies, MDPI, vol. 13(15), pages 1-24, July.
    12. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    13. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    14. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    15. Diego Bairrão & João Soares & José Almeida & John F. Franco & Zita Vale, 2023. "Green Hydrogen and Energy Transition: Current State and Prospects in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, January.
    16. Kaltenegger, Oliver & Löschel, Andreas & Pothen, Frank, 2017. "The effect of globalisation on energy footprints: Disentangling the links of global value chains," Energy Economics, Elsevier, vol. 68(S1), pages 148-168.
    17. Cinzia Buratti & Francesco Asdrubali & Domenico Palladino & Antonella Rotili, 2015. "Energy Performance Database of Building Heritage in the Region of Umbria, Central Italy," Energies, MDPI, vol. 8(7), pages 1-18, July.
    18. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    19. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    20. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:9:p:12190-12208:d:55209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.