IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i8p9773-9786d53063.html
   My bibliography  Save this article

Experimental Investigation on the Effect of Phase Change Materials on Compressed Air Expansion in CAES Plants

Author

Listed:
  • Beatrice Castellani

    (CIRIAF, University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy)

  • Andrea Presciutti

    (CIRIAF, University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy
    These authors contributed equally to this work.)

  • Mirko Filipponi

    (CIRIAF, University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy
    These authors contributed equally to this work.)

  • Andrea Nicolini

    (CIRIAF, University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy
    These authors contributed equally to this work.)

  • Federico Rossi

    (CIRIAF, University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy)

Abstract

The integration of renewable energy in the electrical grid is challenging due to the intermittent and non-programmable generated electric power and to the transmission of peak power levels. Several energy storage technologies have been studied to find a solution to these issues. In particular, compressed air energy storage (CAES) plants work by pumping and storing air into a vessel or in an underground cavern; then when energy is needed, the pressurized air is expanded in an expansion turbine. Several CAES configurations have been proposed: diabatic, adiabatic and isothermal. The isothermal process seems to be the most promising to improve the overall efficiency. It differs from conventional CAES approaches as it employs near-isothermal compression and expansion. Currently, there are no commercial isothermal CAES implementations worldwide, but several methods are under investigation. In this paper, the use of phase change materials (PCM) for isothermal air expansion is discussed. Air expansion tests in presence of PCM were carried out in a high-pressure vessel in order to analyze the effect of PCM on the process. Results show that in presence of PCM near isothermal expansion conditions occur and therefore they affect positively the value of the obtainable expansion work.

Suggested Citation

  • Beatrice Castellani & Andrea Presciutti & Mirko Filipponi & Andrea Nicolini & Federico Rossi, 2015. "Experimental Investigation on the Effect of Phase Change Materials on Compressed Air Expansion in CAES Plants," Sustainability, MDPI, vol. 7(8), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:8:p:9773-9786:d:53063
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/8/9773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/8/9773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ippolito, M.G. & Di Silvestre, M.L. & Riva Sanseverino, E. & Zizzo, G. & Graditi, G., 2014. "Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios," Energy, Elsevier, vol. 64(C), pages 648-662.
    2. Beatrice Castellani & Elena Morini & Mirko Filipponi & Andrea Nicolini & Massimo Palombo & Franco Cotana & Federico Rossi, 2014. "Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds," Sustainability, MDPI, vol. 6(10), pages 1-15, September.
    3. Serra, Luis M. & Lozano, Miguel-Angel & Ramos, Jose & Ensinas, Adriano V. & Nebra, Silvia A., 2009. "Polygeneration and efficient use of natural resources," Energy, Elsevier, vol. 34(5), pages 575-586.
    4. Rubio-Maya, Carlos & Uche-Marcuello, Javier & Martínez-Gracia, Amaya & Bayod-Rújula, Angel A., 2011. "Design optimization of a polygeneration plant fuelled by natural gas and renewable energy sources," Applied Energy, Elsevier, vol. 88(2), pages 449-457, February.
    5. Kim, Y.M. & Favrat, D., 2010. "Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system," Energy, Elsevier, vol. 35(1), pages 213-220.
    6. Kim, Jaehoon & Kim, Sangsin, 2015. "2012년 국회법 개정의 효과 연구 [A Study on the Effect of the 2012 National Assembly Act Amendment]," KDI Research Monographs, Korea Development Institute (KDI), volume 127, number v:2015-03(k):y:2015:p:1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Peng & Hu, Qingya & Han, Zhonghe & Wang, Changxin & Wang, Runxia & Han, Xu & Wang, Yongzhen, 2022. "Thermodynamic analysis and multi-objective optimization of a trigenerative system based on compressed air energy storage under different working media and heating storage media," Energy, Elsevier, vol. 239(PD).
    2. DinAli, Magd N. & Dincer, Ibrahim, 2018. "Development and analysis of an integrated gas turbine system with compressed air energy storage for load leveling and energy management," Energy, Elsevier, vol. 163(C), pages 604-617.
    3. Beatrice Castellani & Elena Morini & Benedetto Nastasi & Andrea Nicolini & Federico Rossi, 2018. "Small-Scale Compressed Air Energy Storage Application for Renewable Energy Integration in a Listed Building," Energies, MDPI, vol. 11(7), pages 1-15, July.
    4. Lijun Zeng & Laijun Zhao & Qin Wang & Bingcheng Wang & Yuan Ma & Wei Cui & Yujing Xie, 2018. "Modeling Interprovincial Cooperative Energy Saving in China: An Electricity Utilization Perspective," Energies, MDPI, vol. 11(1), pages 1-25, January.
    5. Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    6. Mattia Cottes & Matia Mainardis & Daniele Goi & Patrizia Simeoni, 2020. "Demand-Response Application in Wastewater Treatment Plants Using Compressed Air Storage System: A Modelling Approach," Energies, MDPI, vol. 13(18), pages 1-15, September.
    7. Kangyu Deng & Kai Zhang & Xinran Xue & Hui Zhou, 2019. "Design of a New Compressed Air Energy Storage System with Constant Gas Pressure and Temperature for Application in Coal Mine Roadways," Energies, MDPI, vol. 12(21), pages 1-14, November.
    8. Lutsenko, Nickolay A. & Fetsov, Sergey S., 2020. "Effect of side walls shape on charging and discharging performance of thermal energy storages based on granular phase change materials," Renewable Energy, Elsevier, vol. 162(C), pages 466-477.
    9. Beatrice Castellani & Alberto Maria Gambelli & Elena Morini & Benedetto Nastasi & Andrea Presciutti & Mirko Filipponi & Andrea Nicolini & Federico Rossi, 2017. "Experimental Investigation on CO 2 Methanation Process for Solar Energy Storage Compared to CO 2 -Based Methanol Synthesis," Energies, MDPI, vol. 10(7), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
    2. Halder, P.K. & Paul, N. & Joardder, M.U.H. & Khan, M.Z.H. & Sarker, M., 2016. "Feasibility analysis of implementing anaerobic digestion as a potential energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 124-134.
    3. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    4. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    5. Farhat, Karim & Reichelstein, Stefan, 2016. "Economic value of flexible hydrogen-based polygeneration energy systems," Applied Energy, Elsevier, vol. 164(C), pages 857-870.
    6. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    7. Lythcke-Jørgensen, Christoffer & Ensinas, Adriano Viana & Münster, Marie & Haglind, Fredrik, 2016. "A methodology for designing flexible multi-generation systems," Energy, Elsevier, vol. 110(C), pages 34-54.
    8. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2018. "Allocation of economic costs in trigeneration systems at variable load conditions including renewable energy sources and thermal energy storage," Energy, Elsevier, vol. 151(C), pages 633-646.
    9. Segurado, R. & Pereira, S. & Correia, D. & Costa, M., 2019. "Techno-economic analysis of a trigeneration system based on biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 501-514.
    10. Mazzoni, Stefano & Ooi, Sean & Nastasi, Benedetto & Romagnoli, Alessandro, 2019. "Energy storage technologies as techno-economic parameters for master-planning and optimal dispatch in smart multi energy systems," Applied Energy, Elsevier, vol. 254(C).
    11. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    12. Hosan, Shahadat & Rahman, Md Matiar & Karmaker, Shamal Chandra & Saha, Bidyut Baran, 2023. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion," Energy, Elsevier, vol. 267(C).
    13. Bomi Nomlala, 2021. "Financial Socialisation of Accounting Students in South Africa," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 10(2), pages 01-15, April.
    14. Karellas, S. & Tzouganatos, N., 2014. "Comparison of the performance of compressed-air and hydrogen energy storage systems: Karpathos island case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 865-882.
    15. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    16. Jonathan Knuckey & Myunghee Kim, 2020. "The Politics of White Racial Identity and Vote Choice in the 2018 Midterm Elections," Social Science Quarterly, Southwestern Social Science Association, vol. 101(4), pages 1584-1599, July.
    17. Min Kwan Baek & Young Saing Kim & Eun Young Kim & Ae Jin Kim & Won-Jun Choi, 2016. "Health-Related Quality of Life in Korean Adults with Hearing Impairment: The Korea National Health and Nutrition Examination Survey 2010 to 2012," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-10, October.
    18. Nicole A. Cunningham, 2015. "Photothermal Therapy as an Alternative Treatment for the Clinical Management of Cancer," International Journal of Sciences, Office ijSciences, vol. 4(11), pages 30-32, November.
    19. Niki Koutrou & Athanasios (Sakis) Pappous & Anna Johnson, 2016. "Post-Event Volunteering Legacy: Did the London 2012 Games Induce a Sustainable Volunteer Engagement?," Sustainability, MDPI, vol. 8(12), pages 1-12, November.
    20. Ibrahim, Amin & Rahnamayan, Shahryar & Vargas Martin, Miguel & Yilbas, Bekir, 2014. "Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics," Energy, Elsevier, vol. 77(C), pages 305-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:8:p:9773-9786:d:53063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.